当前位置:高中试题 > 数学试题 > 函数的奇偶性与周期性 > 已知函数f(x)=lnx,g(x)=12x2,(I)设函数F(x)=ag(x)-f(x)(a>0),若F(x)没有零点,求a的取值范围;(II)若x1>x2>0...
题目
题型:解答题难度:一般来源:广东模拟
已知函数f(x)=lnx,g(x)=
1
2
x2

(I)设函数F(x)=ag(x)-f(x)(a>0),若F(x)没有零点,求a的取值范围;
(II)若x1>x2>0,总有m[g(x1)-g(x2)]>x1f(x1)-x2f(x2)成立,求实数m的取值范围.
答案
(I)F(x)=ag(x)-f(x)=
1
2
ax2-lnx,
F′(x)=ax-
1
x
=
ax2-1
x
   (x>0)
∴函数F(x)在(0,


1
a
)上为减函数,在(


1
a
,+∞)上为增函数
若F(x)没有零点,须且只须F(


1
a
)>0,
1
2a
+
1
2
lna>0,即
1
a
+lna>
0
设g(a)=
1
a
+lna
,∵g′(a)=
a-1
a2

∴g(a)在(0,1)而为减函数,在(1,+∞)上为增函数,而g(1)=1>0
∴g(a)>0,即当a>0时,
1
a
+lna>
0恒成立
故若F(x)没有零点,则a的取值范围为(0,+∞)
(II)若x1>x2>0,总有m[g(x1)-g(x2)]>x1f(x1)-x2f(x2)成立,
即若x1>x2>0,总有mg(x1)-x1f(x1)>mg(x2)-x2f(x2)成立,
即函数h(x)=mg(x)-xf(x)=
1
2
mx2-xlnx,在(0,+∞)上为增函数,
即h′(x)=mx-lnx-1≥0在(0,+∞)上恒成立
即m≥
lnx+1
x
在(0,+∞)上恒成立
设G(x)=
lnx+1
x
,则G′(x)=
-lnx
x2

∴G(x)在(0,1)上为增函数,在(1,+∞)上为减函数,
∴G(x)≤G(1)=1
∴m≥1
核心考点
试题【已知函数f(x)=lnx,g(x)=12x2,(I)设函数F(x)=ag(x)-f(x)(a>0),若F(x)没有零点,求a的取值范围;(II)若x1>x2>0】;主要考察你对函数的奇偶性与周期性等知识点的理解。[详细]
举一反三
已知函数f(x)=4x+
a
x+1
,a>-1
,a为常数,
(1)若a=1,证明f(x)≥0;
(2)对任意x∈(1+∞)f(x)>1恒成立,求实数a的取值范围.
题型:解答题难度:一般| 查看答案
已知函数f(x)=(x2-ax+1)ex,(a≥0)
(1)求函数f(x)的单调区间;
(2)若对于任意x∈[0,1],f(x)≥1恒成立,求a取值范围.
题型:解答题难度:一般| 查看答案
已知函数f(x)=ax3+bx2+cx+d(a,b,c,d∈R,且a≠0),且函数f(x)图象关于原点中心对称,其图象在x=3处的切线方程为8x-y-18=0,
g(x)=f/(x)+f/(


3
)

(1)求函数f(x)的解析式;
(2)若f(x)>
3
2
x2-3x+a2+a
在[0,2]上恒成立,求实数a的取值范围;
(3)若数列{an}满足an+1=g(an),a1=2,(n∈N*),
试证明:
1
a1
+
1
a2
+…+
1
an
7
8
题型:解答题难度:一般| 查看答案
若函数y=f(x-2)是偶函数,则y=f(x)的对称轴方程为______.
题型:填空题难度:一般| 查看答案
已知函数f(x)、g(x),下列说法正确的是(  )
A.f(x)是奇函数,g(x)是奇函数,则f(x)+g(x)是奇函数
B.f(x)是偶函数,g(x)是偶函数,则f(x)+g(x)是偶函数
C.f(x)是奇函数,g(x)是偶函数,则f(x)+g(x)一定是奇函数或偶函数
D.f(x)是奇函数,g(x)是偶函数,则f(x)+g(x)可以是奇函数或偶函数
题型:单选题难度:简单| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.