当前位置:高中试题 > 数学试题 > 函数的单调性与最值 > 已知f(x)是定义在R上的恒不为零的函数,且对于任意的x,y∈R都满足f(x)•f(y)=f(x+y).(1)求f(0)的值,并证明对任意的x∈R,有f(x)>...
题目
题型:解答题难度:一般来源:不详
已知f(x)是定义在R上的恒不为零的函数,且对于任意的x,y∈R都满足f(x)•f(y)=f(x+y).
(1)求f(0)的值,并证明对任意的x∈R,有f(x)>0;
(2)设当x<0时,都有f(x)>f(0),证明:f(x)在(-∞,+∞)上是减函数.
答案
(1)可得f(0)•f(0)=f(0)
∵f(0)≠0
∴f(0)=1
又对于任意x∈R, f(x)=f(
x
2
+
x
2
)=[f(
x
2
)]2≥0
f(
x
2
)≠0
,∴f(x)>0
(2)设x1,x2∈R且x1<x2,则f(x1)-f(x2)=f[(x1-x2)+x2]-f(x2)=f(x2)[f(x1-x2)-1]
∵x1-x2<0
∴f(x1-x2)>f(0)=1
∴f(x1-x2)-1>0
对f(x2)>0
∴f(x2)f[(x1-x2)-1]>0
∴f(x1)>f(x2)故f(x)在R上是减函数
核心考点
试题【已知f(x)是定义在R上的恒不为零的函数,且对于任意的x,y∈R都满足f(x)•f(y)=f(x+y).(1)求f(0)的值,并证明对任意的x∈R,有f(x)>】;主要考察你对函数的单调性与最值等知识点的理解。[详细]
举一反三
已知函数f(x)=logm
1+x
1-x
(其中m>0,m≠1)

(1)判断函数f(x)的奇偶性;
(2)证明:函数f(x)具有性质:f(x)+f(y)=f(
x+y
1+xy
)

(3)若f(
a+b
1+ab
)=1
f(
a-b
1-ab
)=2
,且|a|<1,|b|<1,求f(a),f(b)的值.
题型:解答题难度:一般| 查看答案
已知
x
2
=
y
3
=
z
5
,且x+y+z=100,求x+2y+3z=______.
题型:填空题难度:一般| 查看答案
设f(x)是定义在实数集R上的函数且满足f(x+2)=f(x+1)-f(x).已知f(1)=lg
3
2
,f(2)=lg15.
(1)通过计算f(3),f(4),…,由此猜测函数的周期T,并据周期函数的定义给出证明;
(2)求f(2009)的值.
题型:解答题难度:一般| 查看答案
已知分段函数f(x)=





x(x>0)
x2(x≤0)
,则f(-1)=______.
题型:填空题难度:简单| 查看答案
已知f(x)=





(4-
a
2
)x+2
ax
x≤1
x>1
是(-∞,+∞)上的增函数,则a的取值范围是______.
题型:填空题难度:简单| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.