当前位置:高中试题 > 数学试题 > 函数的单调性与最值 > 已知函数f(x)=2x-12x.(1)若f(x)=2+22x,求x的值;(2)判断f(x)的单调性,并证明;(3)若2tf(2t)+mf(t)≥0对于任意实数t...
题目
题型:解答题难度:一般来源:不详
已知函数f(x)=2x-
1
2x

(1)若f(x)=2+
2
2x
,求x的值;
(2)判断f(x)的单调性,并证明;
(3)若2tf(2t)+mf(t)≥0对于任意实数t∈[1,2]恒成立,求实数m的取值范围.
答案
(1)∵f(x)=2x-
1
2x
=2+
2
2x
,∴22x -2•2x-3=0,解得 2x=3,或 2x=-1 (舍去),
故 x=log23.
(2)函数f(x)的定义域为R,任意取x2>x1,则 f(x2)-f(x1)=2x2-
1
2x2
-(2x1-
1
2x1
)=(2x2-2x1)(1+
1
2x2•2x1
).
由题设可得,(2x2-2x1)>0,(1+
1
2x2•2x1
)>0,∴f(x2)-f(x1)>0,即 f(x2)>f(x1),
故函数f(x)在R上是增函数.
(3)当t∈[1,2],2tf(2t)+mf(t)≥0恒成立,即2t(22t-
1
22t
)+m(2t-
1
2t
)≥0.
由于2t-
1
2t
>0,∴2t(2t+
1
2t
)+m≥0,故 m≥-(4t+1).
由于-(4t+1)的最大值为-5,故有m≥-5,即m的范围是[-5,+∞).
核心考点
试题【已知函数f(x)=2x-12x.(1)若f(x)=2+22x,求x的值;(2)判断f(x)的单调性,并证明;(3)若2tf(2t)+mf(t)≥0对于任意实数t】;主要考察你对函数的单调性与最值等知识点的理解。[详细]
举一反三
函数f(x)=4x-1+22-x的最小值为(  )
A.3B.
5
4
C.2D.1
题型:单选题难度:简单| 查看答案
函数y=log
3
π
(x2+2x-3)
的递减区间为 ______.
题型:填空题难度:一般| 查看答案
函数y=2x2-4x+1的单调递减区间是______.
题型:填空题难度:一般| 查看答案
已知函数f(x)=
4x-a
1+x2
在区间[m,n]上为增函数,
(I)若m=0,n=1时,求实数a的取值范围;
(Ⅱ)若f(m)f(n)=-4.则当f(n)-f(m)取最小值时,
(i)求实数a的值;
(ii)若P(x1,y1),Q(x2,y2)(a<x1<x2<n)是f(x)图象上的两点,且存在实数x0∈(a,n)使得f′(x0)=
f(x2)-f(x1)
x2-x1
,证明:x1<x0<x2
题型:解答题难度:一般| 查看答案
函数f(x)=loga|x+b|是偶函数,且在区间(0,+∞)上单调递减,则f(b-2)与f(a+1)的大小关系为(  )
A.f(b-2)=f(a+1)B.f(b-2)>f(a+1)C.f(b-2)<f(a+1)D.不能确定
题型:单选题难度:简单| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.