当前位置:高中试题 > 数学试题 > 函数的单调性与最值 > 函数f(x)=loga|x+b|是偶函数,且在区间(0,+∞)上单调递减,则f(b-2)与f(a+1)的大小关系为(  )A.f(b-2)=f(a+1)B.f(...
题目
题型:单选题难度:简单来源:不详
函数f(x)=loga|x+b|是偶函数,且在区间(0,+∞)上单调递减,则f(b-2)与f(a+1)的大小关系为(  )
A.f(b-2)=f(a+1)B.f(b-2)>f(a+1)C.f(b-2)<f(a+1)D.不能确定
答案
∵f(x)为偶函数
∴b=0
∵f(x)在(0,+∞)上单调递减,
∴0<a<1,
f(b-2)=f(-2)=f(2)>f(a+1)
∴f(a+1)<f(b-2)
故选B.
核心考点
试题【函数f(x)=loga|x+b|是偶函数,且在区间(0,+∞)上单调递减,则f(b-2)与f(a+1)的大小关系为(  )A.f(b-2)=f(a+1)B.f(】;主要考察你对函数的单调性与最值等知识点的理解。[详细]
举一反三
已知函数f(x)=
a
2
-
2x
2x+1
(a为常数)
(1)证明:函数f(x)在(-∞,+∞)上是减函数;
(2)若f(x)为奇函数,求a的值.
题型:解答题难度:一般| 查看答案
已知函数f(x)=
x
1+|x|

(Ⅰ)判断并证明函数f(x)的奇偶性;
(Ⅱ)若x1<x2,判断 f (x1)和f (x2)的大小,并给出证明.
题型:解答题难度:一般| 查看答案
若f(sinx)=cos2x,则f(cos15°)的值为______.
题型:填空题难度:一般| 查看答案
已知|m|<1,直线l1:y=mx+1,l2:x=-my+1,l1与l2相交于点P,l1交y轴于点A,l2交x轴于点B
(1)证明:l1⊥l2
(2)用m表示四边形OAPB的面积S,并求出S的最大值;
(3)设S=f (m),求U=S+
1
S
的单调区间.
题型:解答题难度:一般| 查看答案
已知二次函数f(x)=ax2+bx+4,集合A={x|f(x)=x}.
(1)若A={1},求f(x);
(2)若1∈A,且1≤a≤2,设f(x)在区间[
1
2
,2]
上的最大值、最小值分别为M、m,记g(a)=M-m,求g(a)的最小值.
题型:解答题难度:一般| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.