当前位置:高中试题 > 数学试题 > 函数的单调性与最值 > 已知函数f(x)=ax-a-x,(a>1,x∈R).(Ⅰ) 判断并证明函数f(x)的奇偶性;(Ⅱ)判断并证明函数f(x)的单调性;(Ⅲ)若f(1-t)+f(1-...
题目
题型:解答题难度:一般来源:不详
已知函数f(x)=ax-a-x,(a>1,x∈R).
(Ⅰ) 判断并证明函数f(x)的奇偶性;
(Ⅱ)判断并证明函数f(x)的单调性;
(Ⅲ)若f(1-t)+f(1-t2)<0,求实数t的取值范围.
答案
(Ⅰ)因为函数f(x)的定义域为R,又f(-x)=a-x-ax=-f(x)
所以f(x)是奇函数
(Ⅱ)函数f(x)为R上的增函数.
证明:在R上任取x1<x2,
f(x1)-f(x2)=ax1-a-x1-ax2+a-x2=(ax1-ax2)+(a-x2-a-x1)
=(ax1-ax2)  (
ax1 ax2 +1
ax1ax2
)

因为x1<x2,又a>1,所以ax1ax2ax1-ax2<0
ax1ax2+1
ax1ax2
>0

∴f(x1)-f(x2)<0
所以f(x1)<f(x2).
所以函数f(x)为R上的增函数
(Ⅲ)由f(1-t)+f(1-t2)<0,可得f(1-t)<-f(1-t2).
由函数f(x)是奇函数,可得f(1-t)<f(t2-1).
又函数f(x)为R上的增函数,所以1-t<t2-1,即t2+t-2>0.
解得 t<-2,或t>1
核心考点
试题【已知函数f(x)=ax-a-x,(a>1,x∈R).(Ⅰ) 判断并证明函数f(x)的奇偶性;(Ⅱ)判断并证明函数f(x)的单调性;(Ⅲ)若f(1-t)+f(1-】;主要考察你对函数的单调性与最值等知识点的理解。[详细]
举一反三
已知函数f(x)的图象与函数g(x)=2x的图象关于直线y=x对称,令h(x)=f(1-|x|),则关于函数h(x)有以下命题:
(1)h(x)的图象关于原点(0,0)对称; (2)h(x)的图象关于y轴对称;
(3)h(x)的最小值为0;           (4)h(x)在区间(-1,0)上单调递增.
正确的是______.
题型:填空题难度:简单| 查看答案
已知函数f(x)=Asin(ωx+φ)(A,ω>0,|φ|<
π
2
)
的图象与y轴交于(0,3


2
)
,它在y右侧的第一个最高点和第一个最低点的坐标分别为(m,6)和(m+
π
2
,-6)

(1)求函数f(x)的解析式及m的值;
(2)若锐角θ满足tanθ=2


2
,求f(θ).
题型:解答题难度:一般| 查看答案
已知函数f(x)=
3
x-1
(x∈[2,6]).试判断此函数在x∈[2,6]上的单调性并求函数在x∈[2,6]上的最大值和最小值.
题型:解答题难度:一般| 查看答案
判断函数f(x)=x2-2在(0,+∞)上的单调性,并证明.
题型:解答题难度:一般| 查看答案
函数f(x)=-x2+2(a-2)x+3在区间[-2,-1]上单调递增,在区间[1,2]上单调递减,则实数a的取值范围是______.
题型:填空题难度:一般| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.