当前位置:高中试题 > 数学试题 > 函数的单调性与最值 > 已知函数f(x)的图象与函数g(x)=2x的图象关于直线y=x对称,令h(x)=f(1-|x|),则关于函数h(x)有以下命题:(1)h(x)的图象关于原点(0...
题目
题型:填空题难度:简单来源:不详
已知函数f(x)的图象与函数g(x)=2x的图象关于直线y=x对称,令h(x)=f(1-|x|),则关于函数h(x)有以下命题:
(1)h(x)的图象关于原点(0,0)对称; (2)h(x)的图象关于y轴对称;
(3)h(x)的最小值为0;           (4)h(x)在区间(-1,0)上单调递增.
正确的是______.
答案
∵函数f(x)的图象与函数g(x)=2x的图象关于直线y=x对称
∴f(x)=log2x
∴h(x)=f(1-|x|)=log2(1-|x|) x∈(-1,1)
而h(-x)=log2(1-|-x|)=h(x)
则h(x)不是奇函数是偶函数,故(1)不正确,(2)正确
该函数在(-1,0)上单调递增,在(0,1)上单调递减
∴h(x)有最大值为0,无最小值
故选项(3)不正确,(4)正确
故答案为:(2)(4)
核心考点
试题【已知函数f(x)的图象与函数g(x)=2x的图象关于直线y=x对称,令h(x)=f(1-|x|),则关于函数h(x)有以下命题:(1)h(x)的图象关于原点(0】;主要考察你对函数的单调性与最值等知识点的理解。[详细]
举一反三
已知函数f(x)=Asin(ωx+φ)(A,ω>0,|φ|<
π
2
)
的图象与y轴交于(0,3


2
)
,它在y右侧的第一个最高点和第一个最低点的坐标分别为(m,6)和(m+
π
2
,-6)

(1)求函数f(x)的解析式及m的值;
(2)若锐角θ满足tanθ=2


2
,求f(θ).
题型:解答题难度:一般| 查看答案
已知函数f(x)=
3
x-1
(x∈[2,6]).试判断此函数在x∈[2,6]上的单调性并求函数在x∈[2,6]上的最大值和最小值.
题型:解答题难度:一般| 查看答案
判断函数f(x)=x2-2在(0,+∞)上的单调性,并证明.
题型:解答题难度:一般| 查看答案
函数f(x)=-x2+2(a-2)x+3在区间[-2,-1]上单调递增,在区间[1,2]上单调递减,则实数a的取值范围是______.
题型:填空题难度:一般| 查看答案
对于三次函数f(x)=ax3+bx2+cx+d(a≠0),定义:设f″(x)是函数y=f(x)的导数y=f′(x)的导数,若方程f″(x)=0有实数解x0,则称点(x0,f(x0))为函数y=f(x)的“拐点”.有同学发现“任何一个三次函数都有‘拐点’;任何一个三次函数都有对称中心;且‘拐点’就是对称中心.”请你将这一发现为条件,求
(1)函数f(x)=x3-3x2+3x对称中心为______.
(2)若函数g(x)=
1
3
x3-
1
2
x2+3x-
5
12
+
1
x-
1
2
,则g(
1
2011
)+g(
2
2011
)+g(
3
2011
)+g(
4
2011
)+…+g(
2010
2011
)=______.
题型:填空题难度:一般| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.