当前位置:高中试题 > 数学试题 > 函数的单调性与最值 > 定义在R上的函数f(x),g(x)满足f(x)=-f(-x),g(x)=g(x+2),若f(-1)=g(1)=3且g(2nf(1))=nf(f(1)+g(-1)...
题目
题型:解答题难度:一般来源:怀化二模
定义在R上的函数f(x),g(x)满足f(x)=-f(-x),g(x)=g(x+2),若f(-1)=g(1)=3且g(2nf(1))=nf(f(1)+g(-1))+2(n∈N),则g(-6)+f(0)=______.
答案
由f(x)=-f(-x)得,f(0)=-f(0),即f(0)=0,f(1)=-f(-1)=-3,
由g(x)=g(x+2),得g(-1)=g(-1+2)=g(1)=3,
则由g(2nf(1))=nf(f(1)+g(-1))+2,得g(2n(-3))=nf(-3+3)+2=nf(0)+2=2,即g(-6n)=2(n∈N),
所以g(-6)+f(0)=2+0=2,
故答案为:2.
核心考点
试题【定义在R上的函数f(x),g(x)满足f(x)=-f(-x),g(x)=g(x+2),若f(-1)=g(1)=3且g(2nf(1))=nf(f(1)+g(-1)】;主要考察你对函数的单调性与最值等知识点的理解。[详细]
举一反三
已知f(x)=





log2x,x≥1
f(2x),0<x<1
,则f[(
1
2
)
3
2
]
的值是______.
题型:填空题难度:一般| 查看答案
某种商品每件进价12元,售价20元,每天可卖出48件.若售价降低,销售量可以增加,且售价降低x(0≤x≤8)元时,每天多卖出的件数与x2+x成正比.已知商品售价降低3元时,一天可多卖出36件.
(1)试将该商品一天的销售利润表示成x的函数;
(2)该商品售价为多少元时一天的销售利润最大?
题型:解答题难度:一般| 查看答案
已知y=f(x)是奇函数,若g(x)=f(x)+2且g(1)=1,则g(-1)=______.
题型:填空题难度:一般| 查看答案
设f(x)是定义在R上的函数且f(x)=
1+f(x-2)
1-f(x-2)
,且f(3)=2+


3
Ω,则f(2007)=(  )
A.


3
-2
B.


3
+2
C.2-


3
D.-2-


3
题型:单选题难度:一般| 查看答案
函数f(x)=ln(3-4x-4x2),则f(x)的单调递减区间是______.
题型:填空题难度:一般| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.