当前位置:高中试题 > 数学试题 > 函数的单调性与最值 > 已知f(x)=px2+23x+q是奇函数,且f(2)=53,(1)求实数p和q的值.(2)求f(x)的单调区间....
题目
题型:解答题难度:一般来源:不详
已知f(x)=
px2+2
3x+q
是奇函数,且f(2)=
5
3

(1)求实数p和q的值.
(2)求f(x)的单调区间.
答案
解;(1)f(x)=
px2+2
3x+q
是奇函数,则f(-x)=-f(x)恒成立,
f(-x)=
px2+2
-3x+q
=-
px2+2
3x+q
=
px2+2
-3x-q
,所以q=0,又f(2)=
5
3
,可得p=2,
所以p=2,q=0
(2)由(1)知f(x)=
2x2+2
3x
2
3
x+
2
3x
f′(x)=
2
3
-
2
3x2

令f′(x)>0得x<-1或x>1,令f′(x)<0得-1<x<1,因为x≠0,
所以f(x)的增区间为(-∞,-1),(1,+∞)
减区间为(-1,0),(0,1)
核心考点
试题【已知f(x)=px2+23x+q是奇函数,且f(2)=53,(1)求实数p和q的值.(2)求f(x)的单调区间.】;主要考察你对函数的单调性与最值等知识点的理解。[详细]
举一反三
如果函数f(x)在区间D上有定义,且对任意x1,x2∈D,x1≠x2,都有f(
x1+x2
2
)<
f(x1)+f(x2)
2
,则称函数f(x)在区间D上的“凹函数”.
(Ⅰ)已知f(x)=ln(1+ex)-x(x∈R),判断f(x)是否是“凹函数”,若是,请给出证明;若不是,请说明理由;
(Ⅱ)已知f(x)=ln(1+ex)-x是定义域在R上的减函数,且A、B、C是其图象上三个不同的点,求证:△ABC是钝角三角形.
题型:解答题难度:一般| 查看答案
已知定义在(0,+∞)上的函数f(x),对一切x、y>0,恒有f(x+y)=f(x)+f(y)成立,且x>0时,f(x)<0.
(1)求证:f(x)在(0,+∞)上是减函数.
(2)f(2)=-
1
2
时,解不等式f(ax+4)>-1.
题型:解答题难度:一般| 查看答案
已知函数f(x)的定义域是R,且x≠kπ+
π
2
(k∈Z)
,函数f(x)满足f(x)=f(π+x),
x∈(-
π
2
π
2
)
时,f(x)=2x+sinx,设a=f(-1),b=f(-2),c=f(-3)则(  )
A.c<b<aB.b<c<aC.a<c<bD.c<a<b
题型:单选题难度:一般| 查看答案
已知函数f(x)=logax,其反函数为f-1(x),若f-1(2)=9,则f(
1
2
)+f(6)的值为(  )
A.2B.1C.
1
2
D.
1
3
题型:单选题难度:一般| 查看答案
已知f(x)=x+x3,x1、x2、x3∈R,且x1+x2>0,x2+x3>0,x3+x1>0,则f(x1)+f(x2)+f(x3)的值(  )
A.是正数
B.是负数
C.是零
D.可能是正数也可能是负数或是零
题型:单选题难度:简单| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.