当前位置:高中试题 > 数学试题 > 求函数解析式 > 已知f(x)=x3+bx2+cx+d在(-∞,0]上是增函数,在[0,2]上是减函数,且f(x)=0有三个根α,2,β(α≤2≤β).(Ⅰ)求c的值,并求出b和...
题目
题型:解答题难度:一般来源:不详
已知f(x)=x3+bx2+cx+d在(-∞,0]上是增函数,在[0,2]上是减函数,且f(x)=0有三个根α,2,β(α≤2≤β).
(Ⅰ)求c的值,并求出b和d的取值范围;
(Ⅱ)求证f(1)≥2;
(Ⅲ)求|β-α|的取值范围,并写出当|β-α|取最小值时的f(x)的解析式.
答案
(Ⅰ)∵f(x)在(-∞,0]上是增函数,在(0,2]上是减函数;∴x=0是f"(x)=0的根,又∵f"(x)=3x2+2bx+c,∴f"(0)=0,∴c=0.又∵f(x)=0的根为α,2,β,∴f(2)=0,∴8+4b+d=0,又∵f"(2)≤0,
∴12+4b≤0,∴b≤-3,又d=-8-4b
∴d≥4
(Ⅱ)∵f(1)=1+b+d,f(2)=0
∴d=-8-4b且b≤-3,
∴f(1)=1+b-8-4b=-7-3b≥2
(Ⅲ)∵f(x)=0有三根α,2,β;
∴f(x)=(x-α)(x-2)(x-β)
=x3-(α+β+2)•x2-2αβ





α+β+2=-b
αβ=-
d
2
;(
∴|β-α|2=(α+β)2-4αβ
=(b+2)2+2d
=b2+4b+4-16-8b
=b2-4b-12
=(b-2)2-16
又∵b≤-3,∴|β-α|≥3
当且仅当b=-3时取最小值,此时d=4
∴f(x)=x3-3x2+4
核心考点
试题【已知f(x)=x3+bx2+cx+d在(-∞,0]上是增函数,在[0,2]上是减函数,且f(x)=0有三个根α,2,β(α≤2≤β).(Ⅰ)求c的值,并求出b和】;主要考察你对求函数解析式等知识点的理解。[详细]
举一反三
若函数y=f(x)是一次函数,且有f[f(x)]=4x-3,求函数y=f(x)的解析式.
题型:解答题难度:一般| 查看答案
设函数f(x)=ax+
1
x+b
(a,b∈Z)
,曲线y=f(x)在点(2,f(2))处的切线方程为y=3.
(1)求f(x)的解析式;
(2)已知函数y=f(x)的图象是一个中心对称图形,求其对称中心的坐标;
(3)设直线l是过曲线y=f(x)上一点P(x0,y0)的切线,求直线l与直线x=1和直线y=x所围成的三角形的面积.
题型:解答题难度:一般| 查看答案
构造一个满足下面三个条件的函数实例:
①函数在(-∞,-1)上为减函数;②函数具有奇偶性;③函数有最小值;
这样的函数可以为(只写一个):______.
题型:填空题难度:一般| 查看答案
已知二次函数f(x)=ax2+bx满足条件:①f(0)=f(1);②f(x)的最小值为-
1
8

(1)求函数f(x)的解析式;
(2)设数列{an}的前n项积为Tn,且Tn=(
4
5
)f(n)
,求数列{an}的通项公式;
(3)在(2)的条件下,求数列{nan}的前n项的和.
题型:解答题难度:一般| 查看答案
已知常数a、b、c都是实数,函数f(x)=
x3
3
+
a
2
x2+bx+c
的导函数为f′(x)
(Ⅰ)设a=f′(2),b=f′(1),c=f′(0),求函数f(x)的解析式;
(Ⅱ)设 f′(x)=(x-γ)(x-β),且1<γ≤β<2,求f′(1)•f′(2)的取值范围.
题型:解答题难度:一般| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.