当前位置:高中试题 > 数学试题 > 求函数解析式 > 如果函数f(x)的定义域为R,对于m,n∈R,恒有f(m+n)=f(m)+f(n)-6,且f(-1)是不大于5的正整数,当x>-1时,f(x)>0.那么具有这种...
题目
题型:填空题难度:简单来源:不详
如果函数f(x)的定义域为R,对于m,n∈R,恒有f(m+n)=f(m)+f(n)-6,且f(-1)是不大于5的正整数,当x>-1时,f(x)>0.
那么具有这种性质的函数f(x)=______.(注:填上你认为正确的一个函数即可)
答案
令m=n=0,则f(0)=f(0)+f(0)-6∴f(0)=6
因为当x>-1时,f(x)>0 又由f(-1)是不大于5的正整数,
∴方便起见,就假设该函数为一次函数,且f(-1)≤5,则f(x)=x+6或2x+6或3x+6或4x+6或5x+6都可以
故答案为:x+6或2x+6或3x+6或4x+6或5x+6
核心考点
试题【如果函数f(x)的定义域为R,对于m,n∈R,恒有f(m+n)=f(m)+f(n)-6,且f(-1)是不大于5的正整数,当x>-1时,f(x)>0.那么具有这种】;主要考察你对求函数解析式等知识点的理解。[详细]
举一反三
已知函数f(x)=Asin(x+φ)(A>0,0<φ<π),x∈R的最大值是2,其图象经过点M(
π
3
,1).
(1)求f(x)的解析式;
(2)若tanα=3,且函数g(x)=f(x+α)+f(x+α-
π
2
)(x∈R)的图象关于直线x=x0对称,求tanx0的值.
题型:解答题难度:一般| 查看答案
若函数是定义在R上的奇函数,当x<0时,f(x)的解析式是f(x)=x(1-x),则f(x)的解析式是______.
题型:填空题难度:一般| 查看答案
已知函数f(x)的导函数f"(x)=3x2-1,且f(1)=2,则f(x)的解析式为______.
题型:填空题难度:一般| 查看答案
已知函数f(x)=
2
x
+alnx
,a∈R.
(Ⅰ)若a=4,求函数f(x)的单调区间;
(Ⅱ)若函数f(x)在[1,+∞)上单调递增,求实数a的取值范围;
(Ⅲ)记函数g(x)=x2f"(x)+2x3,若函数g(x)的最小值为-2-8


2
,求函数f(x)的解析式.
题型:解答题难度:一般| 查看答案
已知二次函数h(x)与x轴的两交点为(-2,0),(3,0),且h(0)=-3,求h(x).
题型:解答题难度:一般| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.