当前位置:高中试题 > 数学试题 > 分段函数 > 已知函数f(x)满足f(1)=1,对于任意的实数x,y都满足f(x+y)=f(x)+f(y)+2(x+y)+1,若x∈N*,则函数f(x)的解析式为(  )A....
题目
题型:单选题难度:一般来源:乐山模拟
已知函数f(x)满足f(1)=1,对于任意的实数x,y都满足f(x+y)=f(x)+f(y)+2(x+y)+1,若x∈N*,则函数f(x)的解析式为(  )
A.f(x)=4x2-4x+1B.f(x)=4x2+1
C.f(x)=x2-5x-5D.f(x)=x2+3x-3
答案
由题意得:在f(x+y)=f(x)+f(y)+2(x+y)+1中令y=1,
则有f(x+1)=f(x)+f(1)+2(x+1)+1=f(x)+2x+4;
则f(x+1)-f(x)=2x+4;
所以:f(2)-f(1)=2×1+4;
f(3)-f(2)=2×2+4;

f(x)-f(x-1)=2(x-1)+4.
∴上面各式相加得:f(x)-f(1)
=2×1+2×2+…+2×(x-1)+4(x-1)
=2×
(x-1)[1+(x-1)]
2
+4(x-1)
=x2+3x-4;
∴f(x)=f(1)+x2+3x-4=x2+3x-3.
故选:D.
核心考点
试题【已知函数f(x)满足f(1)=1,对于任意的实数x,y都满足f(x+y)=f(x)+f(y)+2(x+y)+1,若x∈N*,则函数f(x)的解析式为(  )A.】;主要考察你对分段函数等知识点的理解。[详细]
举一反三
函数f(x)满足f(-1)=
1
4
,对任意x,y∈R有4f(
x+y
2
)f(
x-y
2
)=f(x)+f(y)
,则f(-2012)______.
题型:填空题难度:一般| 查看答案
已知定义在集合(0,+∞)的函数y=f(x)满足条件:对于任意的x,y∈(0,+∞),f(x•y)=f(x)+f(y),且当x>1时,f(x)>0
(1) 试举出满足条件的一个函数
(2) 证明f(1)=0;
(3) 讨论函数y=f(x)在(0,+∞)上的单调性.
题型:解答题难度:一般| 查看答案
某玩具厂授权生产工艺品福娃,每日最高产量为30只,且每日生产的产品全部出售.已知生产x只福娃的成本为R(元),每只售价P(元),且R,P与x的表达式分别为R=50+3x,P=170-2x.当日产量为多少时,可获得最大利润?最大利润是多少?
题型:解答题难度:一般| 查看答案
已知定义在[-1,1]上的单调函数f(x)满足f(
1
3
)=log23
,且对于任意的x∈[-1,1]都有f(x+y)=f(x)+f(y).
(1)求证:f(x)为奇函数;
(2)试求使f(1-m)+f(1-2m)<0成立的m的取值范围.
题型:解答题难度:一般| 查看答案
已知函数f(x)满足下列条件:
(Ⅰ)定义域为[0,1];
(Π)对于任意x∈[0,1],f(x)≥0,且f(1)=1;
(Ⅲ)当x1≥0,x2≥0,x1+x2≤1时,f(x1+x2)≥f(x1)+f(x2)成立.
(1)求f(0)的值;
(2)证明:对于任意的0≤x≤y≤1,都有f(x)≤f(y)成立;
(3)当0≤x≤1时,探究f(x)与2x的大小关系,并证明你的结论.
题型:解答题难度:一般| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.