当前位置:高中试题 > 数学试题 > 分段函数 > 已知函数f(x)满足下列条件:(Ⅰ)定义域为[0,1];(Π)对于任意x∈[0,1],f(x)≥0,且f(1)=1;(Ⅲ)当x1≥0,x2≥0,x1+x2≤1时...
题目
题型:解答题难度:一般来源:不详
已知函数f(x)满足下列条件:
(Ⅰ)定义域为[0,1];
(Π)对于任意x∈[0,1],f(x)≥0,且f(1)=1;
(Ⅲ)当x1≥0,x2≥0,x1+x2≤1时,f(x1+x2)≥f(x1)+f(x2)成立.
(1)求f(0)的值;
(2)证明:对于任意的0≤x≤y≤1,都有f(x)≤f(y)成立;
(3)当0≤x≤1时,探究f(x)与2x的大小关系,并证明你的结论.
答案
(1)由函数f(x)满足条件(Π)知f(0)≥0;(1分)
在条件(Ⅲ)中,令x1=x2=0得:f(0)≥f(0)+f(0),
∴f(0)≤0;(3分)
故f(0)=0.(4分)

(2)证明:对于任意的0≤x≤y≤1,有0≤y-x≤1成立;(5分)
由f(x)满足条件(Π)可得:f(y-x)≥0;(6分)
再由f(x)满足条件(Ⅲ)可得:
f(y)=f[(y-x)+x]≥f(y-x)+f(x)≥f(x),(8分)
即对于任意的0≤x≤y≤1,都有f(x)≤f(y)成立;(9分)

(3)当
1
2
≤x≤1
时,2x≥1,
由第(2)问结论知f(x)≤f(1)=1,∴f(x)≤2x;
当x=0时,由f(0)=0知f(x)≤2x也成立;
故可猜想:当0≤x≤1时,f(x)≤2x(10分)
下面用反证法证明猜想成立:
假设存在x°∈[0,1],使得f(x0)>2x0
由f(0)=0知x0≠0,故必存在正整数k
使得x0[
1
2k
1
2k-1
]
,∴x0,2x0,4x0,,2k-1x0均在[0,1上,
由条件(Ⅲ)及假设知:
f(2x0)=f(x0+x0)≥f(x0)+f(x0)=2f(x0)>4x0
故f(4x0)>8x0,,f(2k-1x0)>2kx0;(12分)
∵x0[
1
2k
1
2k-1
]
,∴
1
2
2k-1x0≤1
,∴f(2k-1x0)≤f(1)=1
又∵2kx0≥1,f(2k-1x0)>2kx0
∴f(2k-1x0)>1,与f(2k-1x0)≤1矛盾,故假设不成立;
所以对于任意的0≤x≤1,都有f(x)≤2x成立.(14分)
核心考点
试题【已知函数f(x)满足下列条件:(Ⅰ)定义域为[0,1];(Π)对于任意x∈[0,1],f(x)≥0,且f(1)=1;(Ⅲ)当x1≥0,x2≥0,x1+x2≤1时】;主要考察你对分段函数等知识点的理解。[详细]
举一反三
已知函数y=f(x),x∈R,有下列4个命题:
①若f(1+2x)=f(1-2x),则f(x)的图象关于直线x=1对称;
②f(x-2)与f(2-x)的图象关于直线x=2对称;
③若f(x)为偶函数,且f(2+x)=-f(x),则f(x)的图象关于直线x=2对称;
④若f(x)为奇函数,且f(x)=f(-x-2),则f(x)的图象关于直线x=1对称.
其中正确的命题为______.
题型:填空题难度:一般| 查看答案
f(x)=





-log3(x+1)(x>6)
3x-6-1(x≤6)
满足f(n)=-
8
9
,则f(n+4)=(  )
A.2B.-2C.1D.-1
题型:单选题难度:简单| 查看答案
已知函数f(x)=





1-x,x<1
x-1,x≥1
,若数列{an}满足a1=3,an+1=f(an),n∈N*,数列{an}前n项和为Sn,则S2010-2S2009+S2008=(  )
A.1B.0C.-1D.-2
题型:单选题难度:一般| 查看答案
设R上的可导函数f(x)满足f(x+y)=f(x)+f(y)+4xy(x,y∈R),且f"(1)=2,则方程f"(x)=0的根为______.
题型:填空题难度:一般| 查看答案
已知函数y=f(x)的图象过点(-2,-3),且满足f(x-2)=ax2-(a-3)x+(a-2),设g(x)=f[f(x)],F(x)=pg(x)-4f(x)
(I)求f(x)的表达式;
(Ⅱ)是否存在正实数p,使F(x)在(-∞,f(2))上是增函数,在(f(2),0)上是减函数?若存在,求出p;若不存在,请说明理由.
题型:解答题难度:一般| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.