当前位置:高中试题 > 数学试题 > 分段函数 > 集合M={f(x)|存在实数t使得函数f(x)满足f(t+1)=f(t)+f(1)},下列函数(a,b,c,k都是常数)(1)y=kx+b(k≠0,b≠0);(...
题目
题型:填空题难度:一般来源:不详
集合M={f(x)|存在实数t使得函数f(x)满足f(t+1)=f(t)+f(1)},下列函数(a,b,c,k都是常数)
(1)y=kx+b(k≠0,b≠0);(2)y=ax2+bx+c(a≠0);
(3)y=ax(0<a<1);(4)y=
k
x
(k≠0)

(5)y=sinx
属于M的函数有______.(只须填序号)
答案
∵集合M={f(x)|存在实数t使得函数f(x)满足f(t+1)=f(t)+f(1)},
∴对于(1),∵f(x)=kx+b(k≠0,b≠0),f(1)=k+b,f(x)+f(1)=kx+b+k+b=kx+k+2b
∵b≠0,
∴f(x+1)=k(x+1)+b=kx+b+k≠kx+k+2b=f(x)+f(1),故(1)∉集合M;
对于(2),∵f(x)=ax2+bx+c(a≠0),故f(1)=a+b+c,
∴f(x+1)=a(x+1)2+b(x+1)+c=ax2+bx+c+2ax+a+b,令x=
c
2a
,则f(x+1)=ax2+bx+c+a+b+c=f(x)+f(1),故(2)满足题意;
对于(3),∵f(x)=ax(0<a<1),f(1)=a,
∴f(x+1)=ax+1=a•ax<ax<ax+a=f(x)+f(1),故(3)∉集合M;
对于(4),f(x+1)=
k
x+1
(k≠0)
,f(1)=k,
假设存在x使得
k
x+1
=
k
x
+k,由于k≠0,
1
x
-
1
x+1
+1=0,
∴x2+x+1=0,由于△=1-4=-3<0,
故方程x2+x+1=0无实数根,根(4)∉集合M;
对于(5),∵f(x+1)=sin(x+1),f(1)=sin1,
∃x=0,使得f(0+1)=f(0)+f(1)成立,故(5)∈集合M.
综上所述,属于M的函数有(2)(5).
故答案为:(2)(5).
核心考点
试题【集合M={f(x)|存在实数t使得函数f(x)满足f(t+1)=f(t)+f(1)},下列函数(a,b,c,k都是常数)(1)y=kx+b(k≠0,b≠0);(】;主要考察你对分段函数等知识点的理解。[详细]
举一反三
提高二环路的车辆通行能力可有效改善整个城区的交通状况,在一般情况下,二环路上的车流速度v(单位:千米/小时)是车流密度x(单位:辆/千米)的函数.当二环路上的车流密度达到600辆/千米时,造成堵塞,此时车流速度为0;当车流密度不超过60辆/千米时,车流速度为80千米/小时,研究表明:当60≤x≤600时,车流速度v是车流密度x的一次函数.
(Ⅰ)当0≤x≤600时,求函数f(x)的表达式;
(Ⅱ)当车流密度x为多大时,车流量(单位时间内通过二环路上某观测点的车辆数,单位:辆/小时)f(x)=x•v(x)可以达到最大,并求出最大值.(精确到1辆/小时)
题型:解答题难度:一般| 查看答案
已知f(x)=





31-x,x≥0
x2+4x+3,x<0
则方程f(x)=2的实数根的个数是(  )
A.0B.1C.2D.3
题型:单选题难度:简单| 查看答案
设f(x)=-2x2-2ax+a+1,其中x∈[-1,0],a≥0,f(x)的最大值为d.
(1)试用a表示d=g(a);(2)解方程g(a)=5.
题型:解答题难度:一般| 查看答案
设函数f(x)对于任意x,y∈R,都有f(x+y)=f(x)+f(y),f(1)=-2,则f(3)=______.
题型:填空题难度:一般| 查看答案
已知函数y=f(x),对于任意两个不相等的实数x1、x2,都有f(x1+x2)=f(x1)f(x2)成立,且f(0)≠0,则f(-2009)•f(-2008)…f(2008)•f(2009)的值是(  )
A.0B.1C.2D.3
题型:单选题难度:简单| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.