当前位置:高中试题 > 数学试题 > 分段函数 > 已知定义域在R上的单调函数,存在实数x0,使得对于任意的实数x1,x2总有f(x0x1+x0x2)=f(x0)+f(x1)+f(x2)恒成立.(1)求x0的值;...
题目
题型:解答题难度:一般来源:不详
已知定义域在R上的单调函数,存在实数x0,使得对于任意的实数x1,x2总有f(x0x1+x0x2)=f(x0)+f(x1)+f(x2)恒成立.
(1)求x0的值;
(2)若f(1)=1,且对于任意的正整数n,有an=
1
f(n)
,bn=f(
1
2n
)+1
(Ⅰ)若Sn=a1a2+a2a3+…+anan+1,求Sn
(Ⅱ)若Tn=b1b2+b2b3+…+bnbn+1,求Tn
答案
(1)令x1=x2=0,得f(0)=f(x0)+2f(0),∴f(x0)=-f(0)①
令x1=1,x2=0,得f(x0)=f(x0)+f(1)+f(0),∴f(1)=-f(0)②
由①②得f(x0)=f(1)
又∵f(x)是单调函数,
∴x0=1
(2)由(1)可得 f(x1+x2)=f(1)+f(x1)+f(x2)+1
则f(n+1)=f(n)+f(1)+1=f(n)+2
又∵f(1)=1
∴f(n)=2n-1 (n∈N*),
∴an=
1
2n-1

∴Sn=
1
1×3
+
1
3×5
+…+
1
(2n-1)×(2n+1)
=
1
2
(1-
1
3
+
1
3
-
1
5
+…+
1
2n-1
-
1
2n+1
)=
1
2
(1-
1
2n+1

又∵f(1)=f(
1
2
+
1
2
)=f(
1
2
)+f(
1
2
)+f(1),∴f(
1
2
)=0,∴b1=f(
1
2
)+1=1
∵f(
1
2n
)=f(
1
2n+1
+
1
2n+1
)=f(
1
2n+1
)+f(
1
2n+1
)+f(1)=2f(
1
2n+1
)+1
∴bn=f(
1
2n
)+1=2f(
1
2n+1
)+2=2bn+1
bn=b1×(
1
2
)
n-1
=(
1
2
)
n-1

∴bnbn+1=(
1
2
)
n-1
×(
1
2
)
n
=
1
2
×(
1
4
)
n-1

∴Tn=b1b2+b2b3+…+bnbn+1=
1
2
×(1- (
1
4
)
n
 )
1-
1
4
=
2
3
[1-(
1
4
)
n
]
核心考点
试题【已知定义域在R上的单调函数,存在实数x0,使得对于任意的实数x1,x2总有f(x0x1+x0x2)=f(x0)+f(x1)+f(x2)恒成立.(1)求x0的值;】;主要考察你对分段函数等知识点的理解。[详细]
举一反三
已知函数f(x)=





x2+x,(x≥0)
-x2-x,(x<0)
 则不等式f(x)+2>0的解集是 .
题型:填空题难度:一般| 查看答案
如果函数y=f(x)的定义域为R,对于定义域内的任意x,存在实数a使得f(x+a)=f(-x)成立,则称此函数具有“P(a)性质”.
(I)判断函数y=sinx是否具有“P(a)性质”,若具有“P(a)性质”,求出所有a的值;若不具有“P(a)性质”,请说明理由;
(II)设函数y=g(x)具有“P(±1)性质”,且当-
1
2
≤x≤
1
2
时,g(x)=|x|.若y=g(x)与y=mx交点个数为2013个,求m的值.
题型:解答题难度:一般| 查看答案
某商场在节日期间举行促销活动,规定:
(1)若所购商品标价不超过200元,则不给予优惠;
(2)若所购商品标价超过200元但不超过500元,则超过200元的部分给予9折优惠;
(3)若所购商品标价超过500元,其500元内(含500元)的部分按第(2)条给予优惠,超过500元的部分给予8折优惠.
某人来该商场购买一件家用电器共节省330元,则该件家电在商场标价为(  )
A.1600元B.1800元C.2000元D.2200元
题型:单选题难度:简单| 查看答案
设函数f(x)的定义域是(-∞,+∞),满足条件:存在x1≠x2,使得f(x1)≠f(x2),对任何x和y,f(x+y)=f(x)•f(y)成立.求:(1)f(0); (2)对任意值x,判断f(x)值的正负.
题型:解答题难度:一般| 查看答案
函数f(x)的定义域为D={x|x>0},满足:对于任意m,n∈D,都有f(mn)=f(m)+f(n),且f(2)=1.
(1)求f(4)的值;(2)如果f(2x-6)≤3,且f(x)在(0,+∞)上是单调增函数,求x的取值范围.
题型:解答题难度:一般| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.