题目
题型:解答题难度:一般来源:不详
答案
设解出甲、乙、丙三题的学生的集合分别为A、B、C,并用三个圆表示之,则重叠部分表示同时解出两题或三题的学生的集合,其人数分别以a,b,c,d,e,f,g表示.
由于每个学生至少解出一题,故a+b+c+d+e+f+g=25①
由于没有解出甲题的学生中,解出乙题的人数是解出丙题的人数的2倍,故b+f=2(c+f)②
由于只解出甲题的学生比余下的学生中解出甲题的学生的人数多1,故a=d+e+g+1③
由于只解出一题的学生中,有一半没有解出甲题,故a=b+c④
由②得:b=2c+f,f=b-2c⑤
以⑤代入①消去f得a+2b-c+d+e+g=25⑥
以③、④分别代入⑥得:2b-c+2d+2e+2g=24⑦
3b+d+e+g=25⑧
以2×⑧-⑦得:4b+c=26⑨
∵c≥0,∴4b≤26,b≤6.5.
利用⑤⑨消去c,得f=b-2(26-4b)=9b-52
∵f≥0,∴9b≥52.
∵b∈Z,
∴b=6.可以解出a=8,b=6,c=2,f=2,可以知道共有15位同学解出甲题,
但只解出乙题的学生有6人.
核心考点
试题【在某次数学竞赛中共有甲、乙、丙三题,共25人参加竞赛,每个同学至少选作一题.在所有没解出甲题的同学中,解出乙题的人数是解出丙题的人数的2倍;解出甲题的人数比余下】;主要考察你对集合运算等知识点的理解。[详细]
举一反三
A.(-1,1) | B.(-2,1) | C.(-2,-1) | D.(1,2) |
x-1 |
A.{y|y≥1} | B.{y|y>1} | C.{y|y>0} | D.{y|y≥0} |