当前位置:初中试题 > 数学试题 > 轴对称 > 如图,矩形纸片ABCD的边长AB=4,AD=2.将矩形纸片沿EF折叠,使点A与点C重合,折叠后在其一面着色.(1)GC的长为______,FG的长为______...
题目
题型:不详难度:来源:
如图,矩形纸片ABCD的边长AB=4,AD=2.将矩形纸片沿EF折叠,使点A与点C重合,折叠后在其一面着色.
(1)GC的长为______,FG的长为______;
(2)着色面积为______;
(3)若点P为EF边上的中点,则CP的长为______.
答案
(1)图形折叠不变性的性质可知AD=GC,DF=GF,AE=CE,设DF=x,则FG=x,FC=4-x,
∵AD=2,
∴GC=2,
连接AC,

∵EF是折痕,
∴EF垂直平分AC,
∴PF=PE,AE=CE=FC=4-x,
在Rt△FCG中,FC2=FG2+GC2,即(4-x)2=x2+22
解得x=
3
2


(2)∵CF=AE,
∴DF=BE,
∴S着色=S四边形BCFE+S△CGF
=
1
2
S矩形ABCD+S△CGF
=
1
2
×AB•AD+
1
2
CG•GF,
=
1
2
×4×2+
1
2
×2×
3
2

=4+
3
2

=
11
2


(3)在Rt△ADC中,AC=


AD2+CD2
=


22+42
=2


5

∵P是EF的中点,P是AC的中点,
∴PC=
1
2
AC=
1
2
×2


5
=


5

故答案为:2,
3
2
11
2


5
核心考点
试题【如图,矩形纸片ABCD的边长AB=4,AD=2.将矩形纸片沿EF折叠,使点A与点C重合,折叠后在其一面着色.(1)GC的长为______,FG的长为______】;主要考察你对轴对称等知识点的理解。[详细]
举一反三
将一张矩形纸按如图所示的方法折叠:

回答下列问题:
(1)图④中∠AEF是多少度?为什么?
(2)若AB=4,AD=6,CF=2,求BE的长.
题型:不详难度:| 查看答案
(1)我们已经知道:在△ABC中,如果AB=AC,则∠B=∠C.下面我们继续
研究:如图①,在△ABC中,如果AB>AC,则∠B与∠C的大小关系如何?
为此,我们把AC沿∠BAC的平分线翻折,因为AB>AC,所以点C落在AB边的点D处,如图②所示,然后把纸展平,连接DE.接下来,你能推出∠B与∠C的大小关系了吗?试写出说理过程.
(2)如图③,在△ABC中,AE是角平分线,且∠C=2∠B.
求证:AB=AC+CE.
题型:不详难度:| 查看答案
如图,有一个△ABC,三边长为AC=6,BC=8,AB=10,沿AD折叠,使点C落在AB边上的点E处.
(1)试判断△ABC的形状,并说明理由.
(2)求线段CD的长.
题型:不详难度:| 查看答案
A,B两村在河边的同侧,以河边为x轴建立直角坐标系如图,则A,B两村对应的坐标分别为A(0,2),B(4,1),现要在河边P处修一个水泵站,分别向A,B两村送水,点P应选在何处,才可使所用的水管最短?求出所需水管的长度.
题型:不详难度:| 查看答案
如图,矩形纸片ABCD中AB=6cm,BC=10cm,小明同学先折出矩形纸片ABCD的对角线AC,再分别把△ABC、△ADC沿对角线AC翻折交AD、BC于点F、E.
(1)判断小明所折出的四边形AECF的形状,并说明理由;
(2)求四边形AECF的面积.
题型:不详难度:| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.