当前位置:初中试题 > 数学试题 > 直线与圆位置关系 > 如图,B、C是⊙O上的点,线段AB经过圆心O连接AC、BC,过点C作CD⊥AB于D,∠ACD=2∠B.AC是O的切线吗?为什么?...
题目
题型:南平难度:来源:
如图,B、C是⊙O上的点,线段AB经过圆心O连接AC、BC,过点C作CD⊥AB于D,∠ACD=2∠B.AC是O的切线吗?为什么?魔方格
答案

魔方格
AC是⊙O的切线.
理由:连接OC;
∵OC=OB,
∴∠OCB=∠B.
∵∠COD是△BOC的外角,
∴∠COD=∠OCB+∠B=2∠B.
∵∠ACD=2∠B,
∴∠ACD=∠COD.
∵CD⊥AB于D,
∴∠DCO+∠COD=90°;
∴∠DCO+∠ACD=90°,
即OC⊥AC.
∵C为⊙O上的点,
∴AC是⊙O的切线.
核心考点
试题【如图,B、C是⊙O上的点,线段AB经过圆心O连接AC、BC,过点C作CD⊥AB于D,∠ACD=2∠B.AC是O的切线吗?为什么?】;主要考察你对直线与圆位置关系等知识点的理解。[详细]
举一反三
如图,PA是⊙O的切线,切点是A,过点A作AH⊥OP于点H,交⊙O于点B.
求证:PB是⊙O的切线.魔方格
题型:十堰难度:| 查看答案
如图,AB是⊙O的直径,点C在BA的延长线上,CA=AO,点D在⊙O上,∠AB
魔方格
D=30°.
(1)求证:CD是⊙O的切线;
(2)若点P在直线AB上,⊙P与⊙O外切于点B,与直线CD相切于点E,设⊙O与⊙P的半径分别为r与R,求
r
R
的值.
题型:淮安难度:| 查看答案
如图,AB是⊙O的直径,C是⊙O上一点,∠BAC=30°,在AB的延长线上取一点P,连接PC.当PB=
1
2
AB时,求证:PC是⊙O的切线.魔方格
题型:随州难度:| 查看答案
如图,已知点E在△ABC的边AB上,以AE为直径的⊙O与BC相切于点D,且AD平分∠BAC.
求证:AC⊥BC.魔方格
题型:龙岩难度:| 查看答案
如图,⊙O是△ABC的内切圆,切点分别为D、E、F,AB=10,BC=9,AC=7,则AD=______.魔方格
题型:不详难度:| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.