当前位置:初中试题 > 数学试题 > 直线与圆位置关系 > 如图(1),AB是⊙O的直径,射线AT⊥AB,点P是射线AT上的一个动点(P与A不重合),PC与⊙O相切于C,过C作CE⊥AB于E,连接BC并延长BC交AT于点...
题目
题型:不详难度:来源:
如图(1),AB是⊙O的直径,射线AT⊥AB,点P是射线AT上的一个动点(P与A不重合),PC与⊙O相切于C,过C作CE⊥AB于E,连接BC并延长BC交AT于点D,连接PB交CE于F.
(1)请你写出PA、PD之间的关系式,并说明理由;
(2)请你找出图中有哪些三角形的面积被PB分成两等分,并加以证明;
(3)设过A、C、D三点的圆的半径是R,当CF=
1
4
R时,求∠APC的度数,并在图(2)中作出点P.(要求尺规作图,不写作法,但要保留作图痕迹)
答案
(1)如图,连接AC,
∵AT⊥AB,AB是⊙O的直径
∴AT是⊙O的切线
又PC是⊙O的切线
∴PA=PC
∴∠PAC=∠PCA
∵AB是⊙O的直径
∴∠ACB=90°
∴∠PAC+∠ADC=90°,∠PCA+∠PCD=90°
∴∠ADC=∠PCD
所以PD=PC=PA;

(2)由(1)知PD=PA
∴△ABD被PB分成面积相等的两个三角形
∵AT⊥AB,CE⊥AB
∴ATCE
∴CF:PD=BF:BP,EF:PA=BF:BP
所以CF:PD=EF:PA
所以CF=EF
可见△CEB也被PB分成面积相等的两个三角形;

(3)由(1)知PA=PC=PD
∴PA是△ACD的外接圆的半径,即PA=R
由(2)知,CF=EF,而CF=
1
4
R
∴EF=
1
4
PA
所以
EF
PA
=
1
4

∵EFAT
BE
AB
=
EF
PA
=
1
4

∴CE=


3
BE
在Rt△ACE中
∵tan∠CAE=


3
3

∴∠CAE=30°
∴∠PAC=90°-∠CAE=60°
而PA=PC
∴△PAC是等边三角形
∴∠APC=60°
P点的作图方法见图.
核心考点
试题【如图(1),AB是⊙O的直径,射线AT⊥AB,点P是射线AT上的一个动点(P与A不重合),PC与⊙O相切于C,过C作CE⊥AB于E,连接BC并延长BC交AT于点】;主要考察你对直线与圆位置关系等知识点的理解。[详细]
举一反三
P是⊙O的直径AB的延长线上一点,PC与⊙O相切于点C,∠APC的平分线交AC于Q,则∠PQC=______.
题型:不详难度:| 查看答案
如图,四边形ABCD的各边都与⊙O相切,如果ADBC,那么∠DOC的度数是(  )
A.70°B.90°C.60°D.45°

题型:不详难度:| 查看答案
如图,⊙O的弦ADBC,过点D的切线交BC的延长线于点E,ACDE交BD于点H,DO及延长线分别交AC、BC于点G、F.
(1)求证:DF垂直平分AC;
(2)求证:FC=CE;
(3)若弦AD=5cm,AC=8cm,求⊙O的半径.
题型:不详难度:| 查看答案
⊙O的半径为4cm,点A在直线l上,若AO=4cm,则直线l与⊙O的位置关系是(  )
A.相交B.相切C.相离D.相切或相交
题型:不详难度:| 查看答案
下列说法正确的是(  )
A.与圆有公共点的直线是圆的切线
B.到圆心距离等于圆的半径的直线是圆的切线
C.垂直于圆的半径的直线是圆的切线
D.过圆的半径外端的直线是圆的切线
题型:不详难度:| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.