当前位置:初中试题 > 数学试题 > 直线与圆位置关系 > 如图,以AB为直径作半圆与直角梯形ABED另一腰DE相切于C点,再分别以AC、BC、AD、CD、CE、BE为直径作半圆.若AC=3,BC=4,则图中阴影部分的面...
题目
题型:不详难度:来源:
如图,以AB为直径作半圆与直角梯形ABED另一腰DE相切于C点,再分别以AC、BC、
AD、CD、CE、BE为直径作半圆.若AC=3,BC=4,则图中阴影部分的面积和为______.
答案
取AB的中点O,连接OC,
∵AB是⊙O的直径,
∴∠ACB=90°,
∵AC=3,BC=4,
∴AB=


AC2+BC2
=


32+42
=5,
∵DE是⊙O的切线,
∴OC⊥DE,
∵梯形ABED是直角梯形,
∴∠ADC=∠BEC=90°,
∴OC是梯形ABED的中位线,
∴CD=CE,
AD+BE
2
=OC,
∴OA=OC=
AB
2
=
5
2

∵梯形ABED是直角梯形,
∴∠ADC=∠BEC=90°,
∴AC2-AD2=BC2-BE2,即32-(2OC-BE)2=42-BE2,即32-(5-BE)2=42-BE2,解得BE=3.2,
∴CD=CE=


BC2-BE2
=


42-3.22
=
12
5

∴DE=2CE=2×
12
5
=
24
5

∵△ACD是直角三角形,
∴AC2=AD2+CD2
∴(
AC
2
2=(
CD
2
2+(
AD
2
2
即以AC为半径的圆的半圆的面积等于以CD为半径的半圆与以AD为半径的半圆面积的和,
∴以CD为半径的半圆阴影部分与以AD为半径的半圆阴影部分面积的和等于Rt△ACD的面积,
同理可得,以BE为半径的半圆阴影部分与以CE为半径的半圆阴影部分面积的和等于Rt△CBE的面积,
∴S阴影=S梯形ABED-S△ABC=
(AD+BE)×DE
2
-
1
2
AC×BC=OC×DE-
1
2
AC×BC=2.5×
24
5
-
1
2
×3×4=6.
故答案为:6.
核心考点
试题【如图,以AB为直径作半圆与直角梯形ABED另一腰DE相切于C点,再分别以AC、BC、AD、CD、CE、BE为直径作半圆.若AC=3,BC=4,则图中阴影部分的面】;主要考察你对直线与圆位置关系等知识点的理解。[详细]
举一反三
⊙O的半径为6,⊙O的一条弦长4


5
,以4为半径的同心圆与此弦的位置关系是(  )
A.相离B.相交C.相切D.不确定
题型:不详难度:| 查看答案
如图,Rt△ABC中,∠ACB=90°,以AC为直径作⊙O,交AB于D,E为BC中点,连ED.
(1)求证:ED是⊙O的切线;
(2)若⊙O半径为3,ED=4,求AB长?
题型:不详难度:| 查看答案
如图,AC是⊙O的直径,∠ACB=60°,连接AB,过A、B两点分别作⊙O的切线,两切线交于点P.若已知⊙O的半径为1,则△PAB的周长为______.
题型:不详难度:| 查看答案
如图,O是正方形ABCD的对角线BD上一点,⊙O与边AB,BC都相切,点E,F分别在AD,DC上,现将△DEF沿着EF对折,折痕EF与⊙O相切,此时点D恰好落在圆心O处.若DE=2,则正方形ABCD的边长是(  )
A.3B.4C.2+


2
D.2


2

题型:不详难度:| 查看答案
已知:如图,直线MN和⊙O切于点C,AB是⊙O的直径,AE⊥MN,BF⊥MN且与⊙O交于点G,垂足分别是E、F,AC是⊙O的弦,
(1)求证:AB=AE+BF;
(2)令AE=m,EF=n,BF=p,证明:n2=4mp;
(3)设⊙O的半径为5,AC=6,求以AE、BF的长为根的一元二次方程;
(4)将直线MN向上平行移动至与⊙O相交时,m、n、p之间有什么关系?向下平行移动至与⊙O相离时,m、n、p之间又有什么关系?
题型:不详难度:| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.