当前位置:初中试题 > 数学试题 > 点与圆位置关系 > 给出锐角△ABC,以AB为直径的圆与AB边的高CC′及其延长线交于M,N.以AC为直径的圆与AC边的高BB′及其延长线将于P,Q.求证:M,N,P,Q四点共圆....
题目
题型:不详难度:来源:
给出锐角△ABC,以AB为直径的圆与AB边的高CC′及其延长线交于M,N.以AC为直径的圆与AC边的高BB′及其延长线将于P,Q.求证:M,N,P,Q四点共圆.
(第19届美国数学奥林匹克)
答案
证明:设PQ,MN交于K点,连接AP,AM.
由射影定理,得AM*AM=AC"*AB,AP*AP=AC*AB",又B、C、B"、C"四点共圆,
由切割线定理,AC"*AB=AC*AB",
∴AM=AP,又AM=AN,AP=AQ(垂直于直径的弦性质),
∴AM=AP=AN=AQ,M、N、P、Q是共圆心为A的圆.
须证MK•KN=PK•KQ,
即证(MC′-KC′)(MC′+KC′)
=(PB′-KB′)•(PB′+KB′)
或MC′2-KC′2=PB′2-KB′2.①
∵AP=AM(所对弧长相等),
从而有AB′2+PB′2=AC′2+MC′2
故MC′2-PB′2=AB′2-AC′2
=(AK2-KB′2)-(AK2-KC′2
=KC′2-KB′2.②
由②即得①,命题得证.
核心考点
试题【给出锐角△ABC,以AB为直径的圆与AB边的高CC′及其延长线交于M,N.以AC为直径的圆与AC边的高BB′及其延长线将于P,Q.求证:M,N,P,Q四点共圆.】;主要考察你对点与圆位置关系等知识点的理解。[详细]
举一反三
已知直角三角形ABC和ADC有公共斜边AC,M、N分别是AC,BD中点,且M、N不重合.
(1)线段MN与BD是否垂直?请说明理由;
(2)若∠BAC=30°,∠CAD=45°,AC=4,求MN的长.
题型:不详难度:| 查看答案
一个点到圆上的最小距离为4cm,最大距离为9cm,则圆的半径为______cm.
题型:不详难度:| 查看答案
如图①,在直角坐标系中,点A的坐标为(1,0),以OA为边在第一象限内作正方形OABC,点D是x轴正半轴上一动点(OD>1),连接BD,以BD为边在第一象限内作正方形DBFE,设M为正方形DBFE的中心,直线MA交y轴于点N.如果定义:只有一组对角是直角的四边形叫做损矩形.
(1)试找出图1中的一个损矩形;
(2)试说明(1)中找出的损矩形的四个顶点一定在同一个圆上;
(3)随着点D位置的变化,点N的位置是否会发生变化?若没有发生变化,求出点N的坐标;若发生变化,请说明理由;
(4)在图②中,过点M作MG⊥y轴于点G,连接DN,若四边形DMGN为损矩形,求D点坐标.
题型:不详难度:| 查看答案
如图,在▱ABCD中,∠BAD为钝角,且AE⊥BC,AF⊥CD.
(1)求证:A、E、C、F四点共圆;
(2)设线段BD与(1)中的圆交于M、N.求证:BM=ND.
题型:不详难度:| 查看答案
⊙O过△ABC顶点A,C,且与AB,BC交于K,N(K与N不同).△ABC外接圆和△BKN外接圆相交于B和M.求证:∠BMO=90°.(第26届IMO第五题)
题型:不详难度:| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.