当前位置:初中试题 > 数学试题 > 相似图形性质 > 如图,在△ABC中,∠ACB=90°,AC=BC,延长AB至点D,使DB=AB,连接CD,以CD为直角边作等腰三角形CDE,其中∠DCE=90°,连接BE. (...
题目
题型:不详难度:来源:
如图,在△ABC中,∠ACB=90°,AC=BC,延长AB至点D,使DB=AB,连接CD,以CD为直角边作等腰三角形CDE,其中∠DCE=90°,连接BE.
 
(1)求证:△ACD≌△BCE;
(2)若AB=3cm,则BE=            cm;
(3)BE与AD有何位置关系?请说明理由.
答案
(1)根据等腰直角三角形的性质可得CD=CE,由∠ACB=90°可得∠ACB=∠DCE,即可证得∠ACD=∠BCE,再结合AC=BC,即可证得结论;(2)6;(3)垂直
解析

试题分析:(1)根据等腰直角三角形的性质可得CD=CE,由∠ACB=90°可得∠ACB=∠DCE,即可证得∠ACD=∠BCE,再结合AC=BC,即可证得结论;
(2)先由勾股定理求得AB=3,再由DB=AB,可得AD的长,然后根据全等三角形的性质求解即可;
(3)根据全等三角形的性质及三角形的面积公式求解即可
解:(1)∵△CDE是等腰直角三角形,∠DCE=90°,
∴CD=CE,
∵∠ACB=90°,
∴∠ACB=∠DCE,
∴∠ACB+∠BCD=∠DCE+∠BCD,
∴∠ACD=∠BCE,
∵AC=BC
∴△ACD≌△BCE;
(2)∵AC=BC=3,∠ACB=90°,由勾股定理得:AB=3
又∵DB=AB,
∴AD=2AB=6
∵△ACD≌△BCE;
∴BE=AD=6cm;
(3)如图所示:

∵△ACD≌△BCE
∴∠ADC=∠BEC
∵∠1=∠2,∠DCE=90°
∴∠DBE=∠DCE=90°
∴BE⊥AD.
点评:全等三角形的判定和性质是初中数学的重点,贯穿于整个初中数学的学习,是中考中比较常见的知识点,一般难度不大,需熟练掌握.
核心考点
试题【如图,在△ABC中,∠ACB=90°,AC=BC,延长AB至点D,使DB=AB,连接CD,以CD为直角边作等腰三角形CDE,其中∠DCE=90°,连接BE. (】;主要考察你对相似图形性质等知识点的理解。[详细]
举一反三
如图,a,b两片木条放在地面上,∠1,∠2分别为两片木条与地面的夹角,∠3是两片木条间的夹角,若∠2=120°,∠3=100°,则∠1的度数为(   )
A.38°B.40°C.42°D.45°

题型:不详难度:| 查看答案
如图,AB=AC,AD=AE,DE=BC,且∠BAD=∠CAE。
求证:四边形BCDE是矩形。

题型:不详难度:| 查看答案
如图,在Rt△ABC中,∠ACB=900,AC=,BC=3,△DEF是边长为a(a为小于3的常数)的等边三角形,将△DEF沿AC方向平移,使点D在线段AC上,DE∥AB,设△DEF与△ABC重叠部分的周长为T。

(1)求证:点E到AC的距离为一常数;
(2)若AD=,当a=2时,求T的值;
(3)若点D运动到AC的中点处,请用含a的代数式表示T。
题型:不详难度:| 查看答案
三角形的三边长分别是3cm,5cm,6cm,则连结三边中点所围成的三角形的周长是
A.3.5cmB.7cmC.14cmD.28cm

题型:不详难度:| 查看答案
已知:如图,点的边上一点,于点,若,求证:.

题型:不详难度:| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.