当前位置:初中试题 > 数学试题 > 相似图形性质 > 如图,已知AD是△ABC的角平分线,CE是△ABC的高,AD与CE相交于点P,∠BAC=66°,∠BCE=40°,求∠ADC和∠APC的度数....
题目
题型:不详难度:来源:
如图,已知AD是△ABC的角平分线,CE是△ABC的高,AD与CE相交于点P,∠BAC=66°,∠BCE=40°,求∠ADC和∠APC的度数.

答案
∠ADC=83°,∠APC=123°.
解析

试题分析:在直角三角形BCE中∠BCE=40°,可求出∠B=50°,由三角形内角和可求出∠BCA的度数;由AD是∠BAC的角平分线易求∠ADC的度数,再由CE⊥AB易求∠ACE的度数,从而可求∠APC的度数.
试题解析:∵AD是△ABC的角平分线,∠BAC=66°,
∴∠DAC=∠BAD=33°,
∵CE是△ABC的高,∠BCE=40°,
∴∠B=50°,
∠ACB=180°-50°-66°=64°;
∴∠ADC=180°-64°-33°=83°,∠APC=123°
考点: 1.角平分线;2.三角形的内角和.
核心考点
试题【如图,已知AD是△ABC的角平分线,CE是△ABC的高,AD与CE相交于点P,∠BAC=66°,∠BCE=40°,求∠ADC和∠APC的度数.】;主要考察你对相似图形性质等知识点的理解。[详细]
举一反三
如图①,△ABC的角平分线BD、CE相交于点P.
(1)如果∠A=70°,求∠BPC的度数;
(2)如图②,过P点作直线MN∥BC,分别交AB和AC于点M和N,试求∠MPB+∠NPC的度数(用含∠A的代数式表示);

①                   ②             ③            ④
在(2)的条件下,将直线MN绕点P旋转.
(ⅰ)当直线MN与AB、AC的交点仍分别在线段AB和AC上时,如图③,试探索∠MPB、∠NPC、∠A三者之间的数量关系,并说明你的理由;
(ⅱ)当直线MN与AB的交点仍在线段AB上,而与AC的交点在AC的延长线上时,如图④,试问(ⅰ)中∠MPB、∠NPC、∠A三者之间的数量关系是否仍然成立?若成立,请说明你的理由;若不成立,请给出∠MPB、∠NPC、∠A三者之间的数量关系,并说明你的理由.
题型:不详难度:| 查看答案
如图,小亮同学在晚上由路灯A走向路灯B,当他走到点P时,发现他的身影顶部正好接触路灯B的底部,这时他离路灯A有20米,离路灯B有5米,如果小亮的身高为1.6米,那么路灯高度为____________米.

题型:不详难度:| 查看答案
如图,在△ABC中,已知AB=BC=AC=4cm,于D,点P、Q分别从B、C两点同时出发,其中点P沿BC向终点C运动,速度为1cm/s,点Q沿CA,AB向终点B运动,速度为2cm/s,设它们运动的时间为t(s),

(1)求t为何值时,
(2)当时,求证:AD平分△PQD的面积;
(3)当时,求△PQD面积的最大值.
题型:不详难度:| 查看答案
如图,在等腰Rt△ABC中, ,AC=8,F是AB边上的中点,点D、E分别在AC、BC边上运动,且保持AD=CE,连接DE、DF、EF .在此运动变化的过程中,下列结论:①△DFE是等腰直角三角形;②四边形CDFE不可能为正方形;③DE长度的最小值为4;④四边形CDFE的面积保持不变;⑤△CDE面积的最大值为8,其中正确的结论是(  )

A.①②③      B.①④⑤      C.①③④     D.③④⑤
题型:不详难度:| 查看答案
如图,在菱形ABCD中,AC与BD相较于点O,点P是AB的中点,PO=3,则菱形ABCD的周长是        

题型:不详难度:| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.