当前位置:初中试题 > 数学试题 > 正方形 > 如图ABCD是一个正方形花园,E、F是它的两个门,且DE=CF,要修建两条路BE和AF,这两条路等长吗?它们有什么位置关系?请证明你的猜想....
题目
题型:不详难度:来源:
如图ABCD是一个正方形花园,E、F是它的两个门,且DE=CF,要修建两条路BE和AF,这两条路等长吗?它们有什么位置关系?请证明你的猜想.
答案
BE=AF,BE⊥AF;
理由:∵四边形ABCD是正方形,
∴AD=CD,DE=CF,
∴AE=DF,
又∠BAE=∠D=90°,AB=AD,
∴△BAE≌△ADF
∴BE=AF,∠ABE=∠FAD,
∵∠ABE+∠AEB=90°,
∴∠FAD+∠AEB=90°,
∴BE⊥AF.
故BE=AF,BE⊥AF.
核心考点
试题【如图ABCD是一个正方形花园,E、F是它的两个门,且DE=CF,要修建两条路BE和AF,这两条路等长吗?它们有什么位置关系?请证明你的猜想.】;主要考察你对正方形等知识点的理解。[详细]
举一反三
如图,正方形纸片ABCD中,E为BC的中点,折叠正方形,使点A与点E重合,压平后,得折痕MN,设梯形ADMN的面积为S,梯形BCMN的面积是T,求S:T的值.
题型:不详难度:| 查看答案
如图,四边形ABCD是边长为2的正方形,点G是BC延长线上一点,连接AG,点E、F分别在AG上,连接BE、DF,∠1=∠2,∠3=∠4.
(1)证明:△ABE≌△DAF;
(2)若∠AGB=30°,求EF的长.
题型:不详难度:| 查看答案
如图,已知点F是正方形ABCD的边BC的中点,CG平分∠DCE,GF⊥AF.求证:AF=FG.
题型:不详难度:| 查看答案
(1)如图1,正方形ABCD中,E,F,GH分别为四条边上的点,并且AE=BF=CG=DH.求证:四边形EFGH为正方形.
(2)如图2,有一块边长1米的正方形钢板,被裁去长为
1
4
米、宽为
1
6
米的矩形两角,现要将剩余部分重新裁成一正方形,使其四个顶点在原钢板边缘上,且P点在裁下的正方形一边上,问如何剪裁使得该正方形面积最大,最大面积是多少?
题型:不详难度:| 查看答案
已知直角三角形ABC,∠ABC=90°,AB=3,BC=5,以AC为边向外作正方形ACEF,则这个正方形的中心O到点B的距离为______.
题型:不详难度:| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.