题目
题型:不详难度:来源:
答案
∵四边形ABCD是矩形,
∴∠A=90°.
∵AE=AF,
∴∠AFE=∠AEF=45°.
又∵EH⊥EF,FG⊥EF
∴∠GFB=∠HED=45°,
∴△DHE和△BGF都是等腰直角三角形.
如果四边形EFGH是矩形,则EH=FG,
∴ED=FB
又∵AE=AF,
∴AD=AB.
故答案是:AD=AB.
核心考点
试题【如图,在矩形ABCD中,AE=AF,过点E作EH⊥EF交DC于点H,过F作FG⊥EF交BC于G,当AD、AB满足______(关系)时,四边形EFGH为矩形.】;主要考察你对矩形等知识点的理解。[详细]
举一反三
求证:BE=CF.
A.
| B.
| C.
| D.
|
(1)当四边形ABCD分别是菱形、矩形、等腰梯形时,相应的平行四边形EFGH一定是“菱形、矩形、正方形”中的哪一种?请将你的结论填入下表: