当前位置:初中试题 > 数学试题 > 平行四边形性质 > 如图,将矩形纸片ABCD对折的,使点B与点D重合,折痕为EF,连结BE,则与线段BE相等的线段条数(不包括BE,不添加辅助线)有(  )A.1B.2C.3D.4...
题目
题型:不详难度:来源:
如图,将矩形纸片ABCD对折的,使点B与点D重合,折痕为EF,连结BE,则与线段BE相等的线段条数(不包括BE,不添加辅助线)有(  )
A.1B.2C.3D.4

答案
B
解析

试题分析:首先由将矩形纸片ABCD对折,使点B与点D重合,折痕为EF,即可得EF是BD的垂直平分线,则可得DE=BE,又由矩形的性质,可证得:△ODE≌△OBF,则可得DE=BF,则可知与BE相等的线段有DE与BF.
将矩形纸片ABCD对折,使点B与点D重合,折痕为EF,
∴BE=DE,OB=OD,
∵四边形ABCD是矩形,
∴AD∥BC,
∴∠EDB=∠DBF,∠OED=∠OFB,
∴△ODE≌△OBF(AAS),
∴DE=BF,
∴BE=DE=BF.
∴与线段BE相等的线段条数(不包括BE,不添加辅助线)有2条.
故选B.
点评:此题综合性较强,是中考减题,但难度不大,解题时要注意数形结合思想的应用.
核心考点
试题【如图,将矩形纸片ABCD对折的,使点B与点D重合,折痕为EF,连结BE,则与线段BE相等的线段条数(不包括BE,不添加辅助线)有(  )A.1B.2C.3D.4】;主要考察你对平行四边形性质等知识点的理解。[详细]
举一反三
小明将一张正方形包装纸,剪成图1所示形状,用它包在一个棱长为10dm的正方体的表面(不考虑接缝),如图2所示,小明所用正方形包装纸的边长至少为    dm;
题型:不详难度:| 查看答案
已知:E、F是矩形ABCD的对角线AC上的两点,且AE=CF=,连接DE并延长交AB于M,连接BF交CD于N,

(1)求证:四边形BMDN是平行四边形;
(2)当四边形BMDN是菱形时,求的值.
题型:不详难度:| 查看答案
如图,正方形ABCD中,O是对角线AC、BD的交点,过点O作OE⊥OF,分别交AB、BC于E、F.

(1)求证:△OEF是等腰直角三角形.
(2)若AE=4,CF=3,求EF的长.
题型:不详难度:| 查看答案
分别以Rt△ABC的直角边AC及斜边AB向外作等边△ACD、等边△ABE.已知∠ACB=90°、∠BAC=30°,EF⊥AB,垂足为F,连接DF、CF.

(1)试说明AC=EF;
(2)求证:四边形ADFE是平行四边形;
(3)找出图中除△ACD、△ABE以外的等边三角形,并说明理由.
题型:不详难度:| 查看答案
在□ABCD中,∠A∶∠B∶∠C=2∶3∶2,则∠D的度数为( )
A.36°B.60°C.72°D.108°

题型:不详难度:| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.