当前位置:初中试题 > 数学试题 > 全等三角形的应用 > (1)如图(1),在△AOB和△COD中,OA=OB,OC=OD,∠AOB=∠COD=60°.求证:①AC=BD;②∠APB=60°.(2)如图(2),在△AO...
题目
题型:湖北省期末题难度:来源:
(1)如图(1),在△AOB和△COD中,OA=OB,OC=OD,∠AOB=∠COD=60°.求证:①AC=BD;②∠APB=60°.
(2)如图(2),在△AOB和△COD中,若OA=OB,OC=OD,∠AOB=∠COD=α,试探究:
①AC与BD的数量关系,并证明你的结论;
②∠APB与α的大小关系,并证明你的结论.
答案
提示:(1)先证明△AOC≌△BOD(SAS)
由此可以得到①AC=BD,∠OAC=∠OBD
∵∠BPC=∠PAB+∠ABO+∠OBD =∠PAB+∠ABO+∠OAC =∠OAB+∠ABO =120°
∴∠APB=60°
(2)①AC=BD证明△AOC≌△BOD(SAS)
②∠APB=α由△AOC≌△BOD可以得到∠OAC=∠OBD 利用“三角形的外角等于和它不相邻的两个外角的和”可以证明 ∠BPC=∠OBD+∠BOC+∠OCA =∠OAC+∠BOC+∠OCA =180°-α
又因为∠APB=180°-∠BPC
所以∠APB=α
核心考点
试题【(1)如图(1),在△AOB和△COD中,OA=OB,OC=OD,∠AOB=∠COD=60°.求证:①AC=BD;②∠APB=60°.(2)如图(2),在△AO】;主要考察你对全等三角形的应用等知识点的理解。[详细]
举一反三
如图,在△ABC中,AQ=PQ,PR=PS,PR⊥AB于R,PS⊥AC于S,则有下列结论:①AS=AR,②PQ∥AR,③△BRP≌△QSP,则其中
[     ]
A、全部正确
B、仅①和②正确
C、仅①正确
D、仅①和③正确
题型:期末题难度:| 查看答案
如图,已知△ABC是等边三角形,D为AC边上的一个动点,DG∥AB,延长AB到E,使BE=CD,连结DE交BC于F.
(1)求证:DF=EF;
(2)若△ABC的边长为,BE的长为,且a、b满足,求BF的长;
(3)若△ABC的边长为5,设CD=x,BF=y,求y与x间的函数关系式,并写出自变量x的取值范围.
题型:期末题难度:| 查看答案
,且,则的长为[     ]
A.8
B.7
C.6
D.5
题型:期中题难度:| 查看答案
如图,AC和BD相交于点O,OA=OC,OB=OD.求证:DC∥AB.
题型:期中题难度:| 查看答案
如图,点B、F、C、E在一条直线上,FB=CE,AB∥ED,AC∥FD,
求证:AB=DE ,AC=DF.
题型:期中题难度:| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.