当前位置:初中试题 > 数学试题 > 等边三角形性质 > 如图,△ABC为等边三角形,AE=CD,AD、BE相交于点P,BQ⊥AD与Q,PQ=4,PE=1(1)求证∠BPQ=60°(2)求AD的长....
题目
题型:不详难度:来源:
如图,△ABC为等边三角形,AE=CD,AD、BE相交于点P,BQ⊥AD与Q,PQ=4,PE=1
(1)求证∠BPQ=60°
(2)求AD的长.
答案
(1)证明:∵△ABC是等边三角形,
∴AB=AC,∠BAE=∠ACD=60°,
又∵AE=CD,
∴△BAE≌△ACD,
∴∠1=∠2,
∵∠BAE=∠1+∠BAD=60°,
∴∠BAE=∠2+∠BAD=60°,
∴∠BPQ=60°;
(2)∵BQ⊥AD,
∴∠BQP=90°,
又∵∠BPQ=60°,
∴∠PBQ=30°,
∴BP=2PQ=2×4=8,
∴BE=BP+PE=8+1=9,
由(1)知△BAE≌△ACD,
∴AD=BE=9.
核心考点
试题【如图,△ABC为等边三角形,AE=CD,AD、BE相交于点P,BQ⊥AD与Q,PQ=4,PE=1(1)求证∠BPQ=60°(2)求AD的长.】;主要考察你对等边三角形性质等知识点的理解。[详细]
举一反三
正六边形被三组平行线划分成小的正三角形,则图中全体正三角形的个数是(  )
A.24B.36C.38D.76

题型:不详难度:| 查看答案
如图,△ABC以点A旋转中心,按逆时针方向旋转60°得到△AB′C′,则△ABB′是______三角形.
题型:不详难度:| 查看答案
已知:如图,B、C、D在一直线上,△ABC、△ADE是等边三角形,若CE=15cm,CD=6cm,求BC的长度及∠ECD的度数.
题型:不详难度:| 查看答案
如图,D是等边△ABC的边AB上一点,E是BC延长线上一点,CE=DA,连接DE交AC于F,过D点作DG⊥AC于G点.证明下列结论:
(1)AG=
1
2
AD;
(2)DF=EF;
(3)S△DGF=S△ADG+S△ECF
题型:不详难度:| 查看答案
如图1,△ABC为等边三角形,面积为S.D1、E1、F1分别是△ABC三边上的点,且AD1=BE1=CF1=
1
2
AB,连接D1E1、E1F1、F1D1,可得△D1E1F1是等边三角形,此时△AD1F1的面积S1=
1
4
S,△D1E1F1的面积S1=
1
4
S.
(1)当D2、E2、F2分别是等边△ABC三边上的点,且AD2=BE2=CF2=
1
3
AB时如图2,
①求证:△D2E2F2是等边三角形;
②若用S表示△AD2F2的面积S2,则S2=______;若用S表示△D2E2F2的面积S2′,则S2′=______.
(2)按照上述思路探索下去,并填空:
当Dn、En、Fn分别是等边△ABC三边上的点,ADn=BEn=CFn=
1
n+1
AB时,(n为正整数)△DnEnFn是______三角形;
若用S表示△ADnFn的面积Sn,则Sn=______;若用S表示△DnEnFn的面积Sn′,则S′n=______.
题型:不详难度:| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.