当前位置:初中试题 > 数学试题 > 二次函数的应用 > 南博汽车城销售某种型号的汽车,每辆进货价为25万元,市场调研表明:当销售价为29万元时,平均每周能售出8辆,而当销售价每降低0.5万元时,平均每周能多售出4辆....
题目
题型:专项题难度:来源:
南博汽车城销售某种型号的汽车,每辆进货价为25万元,市场调研表明:当销售价为29万元时,平均每周能售出8辆,而当销售价每降低0.5万元时,平均每周能多售出4辆.如果设每辆汽车降价x万元,每辆汽车的销售利润为y万元.(销售利润=销售价-进货价)  
(1)求y与x的函数关系式;在保证商家不亏本的前提下,写出x的取值范围;  
(2)假设这种汽车平均每周的销售利润为z万元,试写出z与x之间的函数关系式;  
(3)当每辆汽车的定价为多少万元时,平均每周的销售利润最大?最大利润是多少?
答案
解:(1)由题意得:y=29﹣25﹣x,
∴y=﹣x+4(0≤x≤4);
(2)z=(8+×4)y
=(8x+8)(﹣x+4)
∴z=﹣8x2+24x+32
=﹣8(x﹣2+50
(3)由第二问的关系式可知:当x=时,z最大=50
∴当定价为29﹣1.5=27.5万元时,有最大利润,最大利润为50万元
或:当
z最大值=
∴当定价为29﹣1.5=27.5万元时,有最大利润,最大利润为50万元。
核心考点
试题【南博汽车城销售某种型号的汽车,每辆进货价为25万元,市场调研表明:当销售价为29万元时,平均每周能售出8辆,而当销售价每降低0.5万元时,平均每周能多售出4辆.】;主要考察你对二次函数的应用等知识点的理解。[详细]
举一反三
如图,抛物线y=x2-2x+k与x轴交于A、B两点,与y轴交于点C(0,-3).
(1)k=_____,点A的坐标为_____,点B的坐标为_____;
(2)设抛物线y=x2-2x+k的顶点为M,求四边形ABMC的面积;
(3)在x轴下方的抛物线上是否存在一点D,使四边形ABDC的面积最大?若存在,请求出点D的坐标;若不存在,请说明理由;
(4)在抛物线y=x2-2x+k上求点Q,使△BCQ是以BC为直角边的直角三角形。
题型:甘肃省中考真题难度:| 查看答案
如图 ,已知直线 L过点A(0,1)和B(1,0),P是x轴正半轴上的动点,OP的垂直平分线交L于点Q,交x轴于点M.
(1)直接写出直线L的解析式;
(2)设OP=t,的面积为S,求S关于t的函数关系式;并求出当时,S的最大值;
(3)直线L1过点A且与x轴平行,问在L1上是否存在点C, 使得是以Q为直角顶点的等腰直角三角形?若存在,求出点C的坐标,并证明;若不存在,请说明理由.
题型:广东省中考真题难度:| 查看答案
在△ABC中,AC=6,BC=8,AB=10,点D、E分别在AB、AC上,且DE将△ABC的周长分成相等的两部分.设AE=x,AD=y,△ADE的面积为S.
(1)求出y关于x的函数关系式,并写出x的取值范围;
(2)求出S关于x的函数关系式;试判断S是否有最大值,若有,则求出其最大值,并指出此时△ADE的形状;若没有,请说明理由.
题型:广西自治区中考真题难度:| 查看答案
当x=2时,抛物线y=ax2+bx+c取得最小值-1,并且抛物线与y轴交于点C(0,3),与x轴交于点A、B. (1)求该抛物线的关系式;
(2)若点M(x,y1),N(x+1,y2)都在该抛物线上,试比较y1与y2的大小;
(3)D是线段AC的中点,E为线段AC上一动点(A、C两端点除外),过点E作y轴的平行线EF与抛物线交于点F.问:是否存在△DEF与△AOC相似?若存在,求出点E的坐标;若不存在,则说明理由.
题型:广西自治区中考真题难度:| 查看答案
已知矩形纸片的长为4,宽为3,以长所在的直线为x轴,O为坐标原点建立平面直角坐标系;点P是OA边上的动点(与点不重合),现将沿PC翻折得到,再在边上选取适当的点D,将沿翻折,得到,使得直线重合.
(1)若点E落在边上,如图①,求点的坐标,并求过此三点的抛物线的函数关系式;
(2)若点E落在矩形纸片的内部,如图②,设当x为何值时,y取得最大值?
(3)在(1)的情况下,过点三点的抛物线上是否存在点Q,使是以为直角边的直角三角形?若不存在,说明理由;若存在,求出点Q的坐标。
题型:广东省中考真题难度:| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.