当前位置:初中试题 > 数学试题 > 二次函数的应用 > 已知二次函数y=x2-mx+m-2。(1)求证:无论m为任何实数,该二次函数的图象与x轴都有两个交点;(2)当该二次函数的图象经过点(3,6)时,求二次函数的解...
题目
题型:北京模拟题难度:来源:
已知二次函数y=x2-mx+m-2。
(1)求证:无论m为任何实数,该二次函数的图象与x轴都有两个交点;
(2)当该二次函数的图象经过点(3,6)时,求二次函数的解析式;
(3)将直线y=x向下平移2个单位长度后与(2)中的抛物线交于A、B两点(点A在点B的左边),一个动点P自点A出发,先到达抛物线的对称轴上的某点E,再到达x轴上的某点F,最后到达点B,求使点P运动的总 路径最短的点E、点F的坐标,并求出这个最短总路径的长。
答案

解:(1)令y=0,则x2-mx+m-2=0,
∵△=(-m)2-4(m-2)=m2-4m+8=(m-2)2+4,
又∵(m-2)2≥0,
∴(m-2)2+4>0,
即△>0,
∴无论m为任何实数,一元二次方程x2-mx+m-2=0总有两不等实根,
∴该二次函数图象与x轴都有两个交点;
(2)∵二次函数y=x2-mx+m-2的图象经过点(3,6),
∴32-3m+m-2=6,
解得m=
∴二次函数的解析式为

(3)如图,将y=x的图象向下平移2个单位长度后,
其解析式为:y=x-2,
解方程组

 ∴直线y=x-2与抛物线y=x2-x-的交点为A(),B(1,-1),
∴点A关于对称轴x=的对称点是A′(0,-),
点B关于x轴的对称点是B′(1,1),
设过点A′B′的直线解析式为y=kx+b,
解得
∴直线A′B′的解析式为y=x-
∴直线A′B′与x轴的交点为F(,0),
与直线x=的交点为E(,-),
则点E(,-)、F(,0)为所求,
过点B′作B′H ⊥AA′于点H,
∴B′H=,HA′=1,
在Rt△A′B′H中,
∴所求最短总路径的长为AE+EF+FB=A′B′=
核心考点
试题【已知二次函数y=x2-mx+m-2。(1)求证:无论m为任何实数,该二次函数的图象与x轴都有两个交点;(2)当该二次函数的图象经过点(3,6)时,求二次函数的解】;主要考察你对二次函数的应用等知识点的理解。[详细]
举一反三
如图,正方形ABCO的边长为2,点F为x轴上一点,CF=1,过点B作BF的垂线,交y轴于点E。
(l)求过点E、B、F的抛物线的解析式;
(2)将∠EBF绕点B顺时针旋转,角的一边交y轴正半轴于点M,另一边交x轴于点N,设BM与(1)中抛物线的另一个交点为点G,且点G的横坐标为,EM与NO有怎样的数量关系?请说明你的结论;
(3)点P在(1)中的抛物线上,且PE与y轴所成锐角的正切值为,求点P的坐标。
题型:北京模拟题难度:| 查看答案
已知抛物线y=x2-x-2。
(1)求抛物线顶点M的坐标;
(2)若抛物线与x轴分别交于A、B两点(点A在点B的左边),与y轴交于点C,点N为线段BM上的一点,过点,N作x轴的垂线,垂足为点Q,当点N在线段BM上运动时(点N不与点B、点M重合),设NQ的长为t,四边形NQAC的面积为S,求S与t之间的函数关系式及自变量t的取值范围;
(3)在对称轴右侧的抛物线上是否存在点P,使△PAC为直角三角形?若存在,求出所有符合条件的点P的坐标;若不存在,请说明理由。
题型:北京模拟题难度:| 查看答案
已知:关于x的一元二次方程x2-2(m+1)x+m2=0有两个整数根,m<5且m为整数。
(1)求m的值;
(2)当此方程有两个非零的整数根时,将关于x的二次函数y=x2-2(m+1)x+m2的图象沿x轴向左平移4个单位长度,求平移后的二次函数图象的解析式;
(3)当直线y=x+b与(2)中的两条抛物线有且只有三个交点时,求b的值。
题型:北京模拟题难度:| 查看答案
如图,已知抛物线y=(3-m)x2+2(m-3)x+4m-m2的顶点A在双曲线y=上,直线y=mx+b经过点A,与y轴交于点B,与x轴交于点C。
(1)确定直线AB的解析式;
(2)将直线AB绕点O顺时针旋转90°,与x轴交于点D,与y轴交于点E,求sin∠BDE的值;
(3)过点B作x轴的平行线与双曲线交于点G,点M在直线BG上,且到抛物线的对称轴的距离为6,设点N在直线BG上,请直接写出使得∠AMB+∠ANB=45°的点N的坐标。
题型:北京模拟题难度:| 查看答案
已知关于x的一元二次方程2x2+4x+k-1=0有实数根,k为正整数。
(1)求k的值;
(2)当此方程有两个非零的整数根时,将关于x 的二次函数y=2x2+4x+k-1的图象向下平移8个单位长度,求平移后的图象的解析式;
(3)在(2)的条件下,将平移后的二次函数的图象在x轴下方的部分沿x轴翻折,图象的其余部分保持不变,得到一个新的图象请你结合这个新的图象回答:当直线y=x+b(b< k)与此图象有两个公共点时,b的取值范围。
题型:北京中考真题难度:| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.