当前位置:初中试题 > 数学试题 > 二次函数的应用 > 如图,直线l1分别交x轴、y轴于A、B两点,且AO=8,BO=8,与直线y=x交于点C,平行于y轴的直线l2从原点O出发,以每秒1个单位长度的速度沿x轴向右平移...
题目
题型:福建省模拟题难度:来源:
如图,直线l1分别交x轴、y轴于A、B两点,且AO=8,BO=8,与直线y=x交于点C,平行于y轴的直线l2从原点O出发,以每秒1个单位长度的速度沿x轴向右平移,到C点时停止;l2分别交线段BC、OC、x轴于点D、E、P,以DE为边向左侧作等边△DEF,设直线l2的运动时间为t(秒)。
(1)直接写出直线l1的解析式;
(2)以D、E、O、F为顶点的多边形能否为梯形,若能,求出此时t的值;若不能,请说明理由;
(3)设△DEF与△BCO重叠部分的面积为S(平方单位),试探究:S与t的函数关系式。
答案
解:(1)设直线11为y=kx+b,
当x=0时,y=b=OB=8
当y=0时,-8=8k,则k=-
所以直线为:y=-x+8①; (2)当F在y轴上时,OFDE四点成为梯形,
设P(x,0),OE=2x,
则DE=x,
由(1)所得DE=-x+8-x=-2x+8
解得x=3即t=3;

(3)当P在y轴或者在三角形BOC外,则S=0;
当P在三角形BOC内时,由以上DE=-2t+8
梯形的上底=DE-2DM=-2t+8-t,
所以面积S=×(DE+HN)t=

核心考点
试题【如图,直线l1分别交x轴、y轴于A、B两点,且AO=8,BO=8,与直线y=x交于点C,平行于y轴的直线l2从原点O出发,以每秒1个单位长度的速度沿x轴向右平移】;主要考察你对二次函数的应用等知识点的理解。[详细]
举一反三
如图,直线y=-x+3与x轴,y轴分别相交于点B,点C,经过B,C两点的抛物线y=ax2+bx+c与x轴的另一交点为A,顶点为P,且对称轴是直线x=2。
(1)求点A的坐标;
(2)求该抛物线的函数表达式;
(3)连结AC,请问在x轴上是否存在点Q,使得以点P,B,Q为顶点的三角形与△ABC相似,若存在,请求出点Q的坐标;若不存在,请说明理由。
题型:广东省模拟题难度:| 查看答案
如图,在平面直角坐标系中,矩形OABC的顶点O为原点,E为AB上一点,把△CBE沿CE折叠,使点B恰好落在边上的点D处,点A、D的坐标分别为(5,0)和(3,0)。
(1)求点C的坐标;
(2)求DE所在直线的解析式;
(3)设过点C的抛物线(b<0)与直线BC的另一个交点为M,问在该抛物线上是否存在点G,使得△CMG为等边三角形,若存在,求出点G的坐标;若不存在,请说明理由。
题型:广东省模拟题难度:| 查看答案
如图所示,在平面直角坐标系xoy中,矩形OABC的边长OA、OC分别为12cm、6cm,点A、C分别在y轴的负半轴和x轴的正半轴上,抛物线y=ax2+bx+c经过点A、B,且18a+c=0
(1)求抛物线的解析式;
(2)如果点P由点A开始沿AB边以1cm/s的速度向终点B移动,同时点Q由点B开始沿BC边以2cm/s的速度向终点C移动。
①移动开始后第t秒时,设△PBQ的面积为S,试写出S与t之间的函数关系式,并写出t的取值范围;
②当S取得最大值时,在抛物线上是否存在点R,使得以P、B、Q、R为顶点的四边形是平行四边形?如果存在,求出R点的坐标,如果不存在,请说明理由。
题型:湖北省模拟题难度:| 查看答案
某工厂生产的某种产品按质量分为10个档次,第1档次(最低档次)的产品一天能生产76件,每件利润10元,每提高一个档次,每件利润增加2元,但一天产量减少4件。
(1)若生产第x档次的产品一天的总利润为y元(其中x为正整数,且1≤x≤10),求出y关于x的函数关系式;
(2)若生产第x档次的产品一天的总利润为1080元,求该产品的质量档次。
题型:专项题难度:| 查看答案
当x=-3时,函数y=x2-3x-7的函数值是 [     ]
A.-25
B.-7
C.8
D.11
题型:月考题难度:| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.