当前位置:初中试题 > 数学试题 > 二次函数的应用 > 如图,已知等腰Rt△AOB,其中∠AOB=90°,OA=OB=2,E、F为斜边AB上的两个动点(E比F更靠近A),满足∠EOF=45°。(1)求证:△AOF∽△...
题目
题型:山东省模拟题难度:来源:
如图,已知等腰Rt△AOB,其中∠AOB=90°,OA=OB=2,E、F为斜边AB上的两个动点(E比F更靠近A),满足∠EOF=45°。
(1)求证:△AOF∽△BEO;
(2)求AF×BE的值;
(3)作EM⊥OA于M,FN⊥OB于N,求OM×ON的值;
(4)求线段EF长的最小值。(提示:必要时可以参考以下公式:当x>0,y>0时, x+y=或x+)。
答案
解:(1)∵△AOB是等腰直角三角形,
∴∠A=∠B=45°,
∵∠AFO=∠B+∠BOF=45°+∠BOF,
又∵∠BOE=∠EOF+∠BOF=45°+∠BOF,
∴∠AFO=∠BOE,
∴△AOF∽△BEO;
(2)∵△BOE∽△AOF,


(3)作斜边AB上的高OD,并记OM=a,ON=b,
则易得ME=2-a,OD=
由已知条件易得:
△MOE∽△DOF
即OM·ON=2;
(4)EF=AB-AE-BF=
=
所以,当, a=b=时,EF取得最小值
核心考点
试题【如图,已知等腰Rt△AOB,其中∠AOB=90°,OA=OB=2,E、F为斜边AB上的两个动点(E比F更靠近A),满足∠EOF=45°。(1)求证:△AOF∽△】;主要考察你对二次函数的应用等知识点的理解。[详细]
举一反三
已知抛物线y=ax2+bx-4的图象与x 相交与A、B(点A在B的左边),与y轴相交与C,抛物线过点A(-1,0)且OB=OC,P是线段BC上的一个动点,过P作直线PE⊥x轴于E,交抛物线于F。
(1)求抛物线的解析式;
(2)若△BPE与△BPF的两面积之比为2∶3时,求E点的坐标;
(3)设OE=t,△CPE的面积为S,试求出S与t的函数关系式;当t为何值时,S有最大值,并求出最大值;(4)在(3)中,当S取得最大值时,在抛物线上求点Q,使得△QEC是以EC为底边的等腰三角形,求Q的坐标。
题型:山东省模拟题难度:| 查看答案
如图,是某座抛物线型桥的示意图,已知抛物线的函数表达式为,为保护桥的安全,在该抛物线上距水面AB高为8.5米的点E、F处要安装两盏警示灯,则这两盏灯的水平距离EF是(    )米(结果保留根号)。
题型:山东省模拟题难度:| 查看答案
如图,已知二次函数图象的顶点坐标为C(1,0),直线y=x+m与该二次函数的图象交于A、B两点,其中A点的坐标为(3,4),B点在y轴上。
(1)求m的值及这个二次函数的关系式;
(2)P为线段AB上的一个动点(点P与A、B不重合),过P作x轴的垂线与这个二次函数的图象交于点E,设线段PE的长为h,点P的横坐标为x,求h与x之间的函数关系式,并写出自变量x的取值范围;
(3)D为直线AB与这个二次函数图象对称轴的交点,在线段AB上是否存在一点P,使得四边形DCEP是平行四形?若存在,请求出此时P点的坐标;若不存在,请说明。
题型:山东省模拟题难度:| 查看答案
把抛物线y=3x2向右平移2个单位,再向上平移1个单位,所得抛物线的解析式为(    )。
题型:四川省模拟题难度:| 查看答案
已知如图,抛物线y=ax2+bx-a的图像与x轴交于A、B两点,点A在点B的左边,顶点坐标为C(0,-4),直线x=m(m>1)与x轴交于点D。
(1)求抛物线的解析式;
(2)在直线x=m(m>1)上有一点P(点P在第一象限),使得以P、D、B为顶点的三角形与以B、C、O为顶点的三角形相似,求P点坐标(用含m的代数式表示);
(3)在(2)成立的条件下,试问:抛物线y=ax2+bx-a是否存在一点Q,使得四边形ABPQ为平行四边形?如果存在这样的点Q,请求出m的值;如果不存在,请简要说明理由。
题型:四川省模拟题难度:| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.