当前位置:初中试题 > 数学试题 > 二次函数的应用 > 已知抛物线y=-x2+2mx-m2+2的顶点A在第一象限,过点A作AB⊥y轴于点B,C是线段AB上一点(不与点A、B重合),过点C作CD⊥x轴于点D并交抛物线于...
题目
题型:福建省中考真题难度:来源:
已知抛物线y=-x2+2mx-m2+2的顶点A在第一象限,过点A作AB⊥y轴于点B,C是线段AB上一点(不与点A、B重合),过点C作CD⊥x轴于点D并交抛物线于点P。
(1)若点C(1,a)是线段AB的中点,求点P的坐标;
(2)若直线AP交y轴的正半轴于点E,且AC=CP,求△OEP的面积S的取值范围。
答案
解:(1)依题意得顶点A的坐标为(2,a),
设P(1,n)据x=-,得A点的横坐标为m,即m=2,
所以y=x2+4x-2,把P点的坐标代入得n=1,
即P点的坐标为(1,1); (2)把抛物线化为顶点式:y=-(x-m)2+2,
可知A(m,2),
设C(n,2),
把n代入y=-(x-m)2+2得y=-(n-m)2+2,
所以P(n,-(n-m)2+2)
∵AC=CP
∴m-n=2+(m-n)2-2,
即m-n=(m-n)2
∴m-n=0或m-n=1,
又∵C点不与端点A、B重合
∴m≠n,
即m-n=1,
则A(m,2),P(m-1,1)
由AC=CP可得BE=AB
∵OB=2
∴OE=2-m,
∴△OPE的面积S=(2-m)(m-1)=-(m-2+(1<m<2),
∴0<S<
核心考点
试题【已知抛物线y=-x2+2mx-m2+2的顶点A在第一象限,过点A作AB⊥y轴于点B,C是线段AB上一点(不与点A、B重合),过点C作CD⊥x轴于点D并交抛物线于】;主要考察你对二次函数的应用等知识点的理解。[详细]
举一反三
如图,已知二次函数y=ax2+bx+c的图像经过A(-1,-1)、B(0,2)、C(1,3)。
(1)求二次函数的解析式;
(2)画出二次函数的图像。
题型:广东省中考真题难度:| 查看答案
在梯形OABC中,CB∥OA,∠AOC=60°,∠OAB=90°,OC=2,BC=4,以点O为原点,OA所在的直线为x轴,建立平面直角坐标系,另有一边长为2的等边△DEF,DE在x轴上(如图(1)),如果让△DEF以每秒1个单位的速度向左作匀速直线运动,开始时点D与点A重合,当点D到达坐标原点时运动停止。
(1)设△DEF运动时间为t,△DEF与梯形OABC重叠部分的面积为S,求S关于t的函数关系式;
(2)探究:在△DEF运动过程中,如果射线DF交经过O、C、B三点的抛物线于点G,是否存在这样的时刻t,使得△OAG的面积与梯形OABC的面积相等?若存在,求出t的值;若不存在,请说明理由。
题型:甘肃省中考真题难度:| 查看答案
如图,已知直线y=-x+2与抛物线y=a(x+2)2相交于A、B两点,点A在y轴上,M为抛物线的顶点。
(1)请直接写出点A的坐标及该抛物线的解析式;
(2)若P为线段AB上一个动点(A、B两端点除外),连接PM,设线段PM的长为1,点P的横坐标为x,请求出l2与x之间的函数关系,并直接写出自变量x的取值范围;
(3)在(2)的条件下,线段AB上是否存在点P,使以A、M、P为顶点的三角形是等腰三角形?若存在,求出点P的坐标;若不存在,请说明理由。
题型:广西自治区中考真题难度:| 查看答案
如图,点C是⊙O优弧ACB上的中点,弦AB=6cm,E为OC上任意一点,动点F从点A出发,以每秒1cm的速度沿AB方向响点B匀速运动,若y=AE2-EF2,则y与动点F的运动时间x(0≤x≤6)秒的函数关系式为(    )。
题型:广西自治区中考真题难度:| 查看答案
如图所示,抛物线y=(x+1)2+k与x轴交于A、B两点,与y轴交于点C(0,-3)。
(1)求抛物线的对称轴及k的值;
(2)抛物线的对称轴上存在一点P,使得PA+PC的值最小,求此时点P的坐标;
(3)点M是抛物线上的一动点,且在第三象限。
①当M点运动到何处时,△AMB的面积最大?求出△AMB的最大面积及此时点M的坐标;
②当M点运动到何处时,四边形AMCB的面积最大?求出四边形AMCB的最大面积及此时点M的坐标。
题型:广东省中考真题难度:| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.