当前位置:初中试题 > 数学试题 > 二次函数的应用 > 如图,抛物线y=x2+bx+c的顶点为D(-1,-4),与y轴交于点C(0,-3),与x轴交于A,B两点(点A在点B的左侧)。(1)求抛物线的解析式;(2)连接...
题目
题型:广东省中考真题难度:来源:
如图,抛物线y=x2+bx+c的顶点为D(-1,-4),与y轴交于点C(0,-3),与x轴交于A,B两点(点A在点B的左侧)。
(1)求抛物线的解析式;
(2)连接AC,CD,AD,试证明△ACD为直角三角形;
(3)若点E在抛物线的对称轴上,抛物线上是否存在点F,使以A,B,E,F为顶点的的四边形为平行四边形?若存在,求出所有满足条件的点F的坐标;若不存在,请说明理由。
答案
解:(1)由题意得
解得:b=2,c=-3,则解析式为:y=x2+2x-3;
(2)由题意结合图形,
则解析式为:y=x2+2x-3,解得x=1或x=-3,由题意点A(-3,0),
 ∴AC=,CD=,AD=
由AC2+CD2=AD2,所以△ACD为直角三角形;
(3)由(2)知ME取最大值时ME=,E(,-),M(,-),
∴MF=,BF=OB-OF=
设在抛物线x轴下方存在点P,使以P、M、F、B为顶点的四边形是平行四边形,则BP∥MF,BF∥PM,
∴P1(0,-)或P2(3,-),
当P1(0,-)时,由(1)知y=x2-2x-3=-3≠-
∴P1不在抛物线上,
当P2(3,-)时,由(1)知y=x2-2x-3=0≠-
∴P2不在抛物线上。
核心考点
试题【如图,抛物线y=x2+bx+c的顶点为D(-1,-4),与y轴交于点C(0,-3),与x轴交于A,B两点(点A在点B的左侧)。(1)求抛物线的解析式;(2)连接】;主要考察你对二次函数的应用等知识点的理解。[详细]
举一反三
已知直线l经过A(6,0)和B(0,12)两点,且与直线y=x交于点C。
(1)求直线l的解析式;
(2)若点P(x,0)在线段OA上运动,过点P作l的平行线交直线y=x于D,求△PCD的面积S与x的函数关系式;S有最大值吗?若有,求出当S最大时x的值;
(3)若点P(x,0)在x轴上运动,是否存在点P,使得△PCA成为等腰三角形?若存在,请写出点P的坐标;若不存在,请说明理由。
题型:广西自治区中考真题难度:| 查看答案
如图,一次函数y=-4x-4的图象与x轴、y轴分别交于A、C两点,抛物线y=x2+bx+c的图象经过A、C两点,且与x轴交于点B。
(1)求抛物线的函数表达式;
(2)设抛物线的顶点为D,求四边形ABDC的面积;
(3)作直线MN平行于x轴,分别交线段AC、BC于点M、N,问在x轴上是否存在点P,使得△PMN是等腰直角三角形?如果存在,求出所有满足条件的P点的坐标;如果不存在,请说明理由。
题型:广西自治区中考真题难度:| 查看答案
如图,在平面直角坐标系中,抛物线y=x2+mx+n经过点A(3,0)、B(0,-3),点P是直线AB上的动点,过点P作x轴的垂线交抛物线于点M,设点P的横坐标为t。
(1)分别求出直线AB和这条抛物线的解析式;
(2)若点P在第四象限,连接AM、BM,当线段PM最长时,求△ABM的面积;
(3)是否存在这样的点P,使得以点P、M、B、O为顶点的四边形为平行四边形?若存在,请直接写出点P的横坐标;若不存在,请说明理由。
题型:广西自治区中考真题难度:| 查看答案
2011年5月22日-29日在美丽的青岛市举行了苏迪曼杯羽毛球混合团体锦标赛,在比赛中,某次羽毛球的运动路线可以看作是抛物线y=-x2+bx+c的一部分(如图所示),其中出球点B离地面O点的距离是1m,球落地点A到O点的距离是4m,那么这条抛物线的解析式是
[     ]
A.
B.
C.
D.
题型:广西自治区中考真题难度:| 查看答案
某商店购进一批单价为8元的商品,如果按每件10元出售,那么每天可销售100件,经调查发现,这种商品的销售单价每提高1元,其销售量相应减少10件,将销售单价定为多少,才能使每天所获销售利润最大?最大利润是多少?
题型:黑龙江省中考真题难度:| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.