当前位置:初中试题 > 数学试题 > 二次函数的应用 > 如图,在一块三角形区域ABC中,∠C=90°,边AC=8,BC=6,现要在△ABC内建造一个矩形水池DEFG,如图的设计方案是使DE在AB上。(1)求△ABC中...
题目
题型:福建省月考题难度:来源:
如图,在一块三角形区域ABC中,∠C=90°,边AC=8,BC=6,现要在△ABC内建造一个矩形水池DEFG,如图的设计方案是使DE在AB上。
(1)求△ABC中AB边上的高h;
(2)设DG=x,当x取何值时,水池DEFG的面积最大?
(3)实际施工时,发现在AB上距B点1.85的M处有一棵大树,问:这棵大树是否位于最大矩形水池的边上?说明理由。
答案
解:(1)4.8;
(2)x=2.4;
(3)影响。 
核心考点
试题【如图,在一块三角形区域ABC中,∠C=90°,边AC=8,BC=6,现要在△ABC内建造一个矩形水池DEFG,如图的设计方案是使DE在AB上。(1)求△ABC中】;主要考察你对二次函数的应用等知识点的理解。[详细]
举一反三
已知抛物线y=-x2+2mx-m2-m+2。
(1)直线L:y=-x+2是否经过抛物线的顶点;
(2)设该抛物线与x轴交于M、N两点,当OM·ON=4,且OM≠ON时,求出这条抛物线的解析式。
题型:福建省月考题难度:| 查看答案
如图①②,在平面直角坐标系中,边长为2的等边△CDE恰好与坐标系中的△OAB重合,现将△CDE绕边AB的中点G(G点也是DE的中点),按顺时针方向旋转180°到△C1DE 的位置。
(1)求C1点的坐标;
(2)求经过三点O、A、C1的抛物线的解析式;
(3)如图③,⊙G是以AB为直径的圆,过B点作⊙G的切线与x轴相交于点F,求切线BF的解析式;
(4)抛物线上是否存在一点M,使得S△AMF∶S△OAB=16∶3,若存在,请求出点M的坐标;若不存在,请说明理由。
图①                                            图②                                                            图③
题型:江西省月考题难度:| 查看答案
如图甲,矩形DEFC的边DE与x轴重合且OD=2,CF交y轴于点B(0,2),已知抛物线的顶点为 A(0,1),点C、F在抛物线上。
(1)求此抛物线的解析式;
(2)如图乙,若P点为抛物线上不同于A点的一点,连接PB并延长交抛物线于点Q,过点P、Q分别作x轴的垂线,垂足分别为S、R,试判断PS与PB是否相等,请说明理由;
(3)在(2)的情况下,试探索在线段SR上是否存在点M,使得以P、S、M为顶点的三角形和以Q、R、M为顶点的三角形相似,若存在,请找出M点的位置;若不存在,请说明理由。
题型:模拟题难度:| 查看答案
一件工艺品进价为100元,标价135元售出,每天可售出100 件,根据销售统计,一件工艺品每降价1元出售,则每天可多售4件,要使每天获得的利润最大,每件需降价的钱数为(    )元。
题型:模拟题难度:| 查看答案
如图所示,在Rt△ABC中,∠A=90°,AB=6、AC=8,D、E分别是边AB、AC的中点,点P从点D出发沿DE方向运动,过点P作PQ⊥BC于Q,过点Q作QR∥BA交AC于R,当点Q与点C重合时,点P停止运动,设BQ=x,QR=y。
(1)若B、K两点的坐标分别为(0,0)、(5,5),C点在x轴的正半轴上,求经过K、B、C三点的抛物线解析式;
(2)求点D到BC的距离DH的长;
(3)求y关于x的函数关系式(不要求写出自变量的取值范围);
(4)是否存在点P,使△PQR为等腰三角形?若存在,请求出所有满足要求的x的值;若不存在,请说明理由。
题型:模拟题难度:| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.