当前位置:初中试题 > 数学试题 > 二次函数的应用 > 已知二次函数的图象经过A(2,0)、C(0,12)两点,且对称轴为直线x=4,设顶点为点P,与x轴的另一交点为点B。(1)求二次函数的解析式及顶点P的坐标;(2...
题目
题型:浙江省中考真题难度:来源:
已知二次函数的图象经过A(2,0)、C(0,12)两点,且对称轴为直线x=4,设顶点为点P,与x轴的另一交点为点B。
(1)求二次函数的解析式及顶点P的坐标;
(2)如图1,在直线y=2x上是否存在点D,使四边形OPBD为等腰梯形?若存在,求出点D的坐标;若不存在,请说明理由;
(3)如图2,点M是线段OP上的一个动点(O、P两点除外),以每秒个单位长度的速度由点P向点O运动,过点M作直线MN∥x轴,交PB于点N,将△PMN沿直线MN对折,得到△P1MN,在动点M的运动过程中,设△P1MN与梯形OMNB的重叠部分的面积为S,运动时间为t秒,求S关于t的函数关系式。
答案

解:(1)设二次函数的解析式为y=ax2+bx+c
由题意得
解得
∴二次函数的解析式为y=x2-8x+12,
点P的坐标为(4,-4)。
(2)存在点D,使四边形OPBD为等腰梯形
理由如下:当y=0时,x2-8x+12=0
∴x1=2,x2=6
∴点B的坐标为(6,0)
设直线BP的解析式为y=kx+m

解得
∴直线BP的解析式为y=2x-12
∴直线OD∥BP
∵顶点坐标P(4, -4)
∴OP=4
设D(x,2x)
则BD2=(2x)2+(6-x)2
当BD=OP时,(2x)2+(6-x)2=32
解得:x1=,x2=2
当x2=2时,OD=BP=,四边形OPBD为平行四边形,舍去
∴当x=时四边形OPBD为等腰梯形
∴当D()时,四边形OPBD为等腰梯形。
(3)① 当0<t≤2时,
 ∵运动速度为每秒个单位长度,运动时间为t秒,
则MP=t
∴PH=t,MH=t,HN=t
∴MN=t
∴S=t·t·=t2
②当2<t<4时,P1G=2t-4,P1H=t
∵MN∥OB



=3t2-12t+12
∴S=t2-(3t2-12t+12)=-t2+12t-12
∴ 当0<t≤2时,S=t2
当2<t<4时,S=-t2+12t-12。

核心考点
试题【已知二次函数的图象经过A(2,0)、C(0,12)两点,且对称轴为直线x=4,设顶点为点P,与x轴的另一交点为点B。(1)求二次函数的解析式及顶点P的坐标;(2】;主要考察你对二次函数的应用等知识点的理解。[详细]
举一反三
如图1,在Rt△ABC中,∠A=90°,AB=AC,BC=,另有一等腰梯形DEFG(GF∥DE)的底边DE与BC重合,两腰分别落在AB、AC上,且G、F分别是AB、AC的中点。
(1)直接写出△AGF与△ABC的面积的比值;
(2)操作:固定△ABC,将等腰梯形DEFG以每秒1个单位的速度沿BC方向向右运动,直到点D与点C重合时停止,设运动时间为x秒,运动后的等腰梯形为DEF′G′(如图2)。
①探究1:在运动过程中,四边形AEF′F能否是菱形?若能,请求出此时x的值;若不能,请说明理由。
②探究2:设在运动过程中△ABC与等腰梯形DEFG重叠部分的面积为y,求y与x的函数关系式。
题型:福建省中考真题难度:| 查看答案
在平面直角坐标系中,如图1,将n个边长为1的正方形并排组成矩形OABC,相邻两边OA和OC分别落在x轴和y轴的正半轴上,设抛物线(a<0)过矩形顶点B、C。
(1)当n=1时,如果a=-1,试求b的值;
(2)当n=2时,如图2,在矩形OABC上方作一边长为1的正方形EFMN,使EF在线段CB上,如果M,N两点也在抛物线上,求出此时抛物线的解析式;
(3)将矩形OABC绕点O顺时针旋转,使得点B落到x轴的正半轴上,如果该抛物线同时经过原点O。
①试求当n=3时a的值;
②直接写出a关于n的关系式。
题型:浙江省中考真题难度:| 查看答案
已知二次函数的图象经过点(0,3),(-3,0),(2, -5),且与x轴交于A、B两点。
(1)试确定此二次函数的解析式;
(2)判断点P(-2,3)是否在这个二次函数的图象上?如果在,请求出△PAB的面积;如果不在,试说明理由。
题型:黑龙江省中考真题难度:| 查看答案
某公司有甲、乙两个绿色农产品种植基地,在收获期这两个基地当天收获的某种农产品,一部份存入仓库,另一部分运往外地销售。根据经验,该农产品在收获过程中两个种植基地累积总产量y(吨)与收获天数x(天)满足函数关系y=2x+3(1≤x≤10且x为整数)。该农产品在收获过程中甲、乙两基地的累积产量分别占两基地累积总产量的百分比和甲、乙两基地累积存入仓库的量分别占甲、乙两基地的累积产量的百分比如下表:
(1)请用含y的代数式分别表示在收获过程中甲、乙两个基地累积存入仓库的量;
(2)设在收获过程中甲、乙两基地累积存入仓库的该种农产品的总量为p(吨),请求出p(吨)与收获天数x(天)的函数关系式;
(3)在(2)的基础上,若仓库内原有该农产品42.6吨,为满足本地市场需求,在此收获期开始的同时,每天从仓库调出一部分该种农产品投入本地市场,若在本地市场售出的该种农产品总量m(吨)与收获天数x(天)满足函数关系m=-x2+13.2x-1.6(1≤x≤10且x为整数)。问在此收获期内连续销售几天,该农产品库存量达到最低值?最低库存量是多少吨?
题型:辽宁省中考真题难度:| 查看答案
如图1,在平面直角坐标系中,拋物线y=ax2+c与x轴正半轴交于点F(16,0)、与y轴正半轴交于点E(0,16),边长为16的正方形ABCD的顶点D与原点O重合,顶点A与点E重合,顶点C与点F重合;

(1)求拋物线的函数表达式;
(2)如图2,若正方形ABCD在平面内运动,并且边BC所在的直线始终与x轴垂直,抛物线始终与边AB交于点P且同时与边CD交于点Q(运动时,点P不与A、B两点重合,点Q不与C、D两点重合)。
设点A的坐标为(m,n)(m>0)。
①当PO=PF时,分别求出点P和点Q的坐标;
②在①的基础上,当正方形ABCD左右平移时,请直接写出m的取值范围;
③当n=7时,是否存在m的值使点P为AB边中点。若存在,请求出m的值;若不存在,请说明理由。
题型:辽宁省中考真题难度:| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.