题目
题型:贵州省中考真题难度:来源:
(1)每天的销售数量m(件)与每件的销售价格x(元)的函数表达式是___________;
(2)求该商场每天销售这种商品的销售利润y(元)与每件的销售价格x(元)之间的函数表达式;
(3)每件商品的销售价格在什么范围内,每天的销售利润随着销售价格的提高而增加?
答案
(2)每件商品的利润为x-50,所以每天的利润为:
y=(x-50)(-x+100),
∴函数解析式为y=-x2+150x-5000;
(3)∵x=-=75,
在50<x<75元时,每天的销售利润随着x的增大而增大。
核心考点
试题【某商场以每件50元的价格购进一种商品,销售中发现这种商品每天的销售量m(件)与每件的销售价x(元)满足一次函数,其图象如图所示。(1)每天的销售数量m(件)与每】;主要考察你对二次函数的应用等知识点的理解。[详细]
举一反三
(2)设P(x,y)是(1)所得抛物线上的一个动点,过点P作直线l⊥x轴于点M,交直线BC于点N。
①若点P在第一象限内,试问:线段PN的长度是否存在最大值?若存在,求出它的最大值及此时x的值;若不存在,请说明理由;
②求以BC为底边的等腰△BPC的面积。
(2)当△ADP是直角三角形时,求点P的坐标;
(3)在问题(2)的结论下,若点E在x轴上,点F在抛物线上,问是否存在以A、P、E、F为顶点的平行四边形?若存在,求点F的坐标;若不存在,请说明理由。