当前位置:初中试题 > 数学试题 > 二次函数的应用 > 如图,平面直角坐标系中有一矩形ABCD(O为原点),点A、C分别在x轴、y轴上,且C点坐标为(0,6);将BCD沿BD折叠(D点在OC边上),使C点落在OA边的...
题目
题型:广东省中考真题难度:来源:
如图,平面直角坐标系中有一矩形ABCD(O为原点),点A、C分别在x轴、y轴上,且C点坐标为(0,6);将BCD沿BD折叠(D点在OC边上),使C点落在OA边的E点上,并将BAE沿BE折叠,恰好使点A落在BD的点F上。
(1)直接写出∠ABE、∠CBD的度数,并求折痕BD所在直线的函数解析式;
(2)过F点作FG⊥x轴,垂足为G,FG的中点为H,若抛物线经过B、H、D三点,求抛物线的函数解析式;
(3)若点P是矩形内部的点,且点P在(2)中的抛物线上运动(不含B、D点),过点P作PN⊥BC分别交BC和BD于点N、M,设h=PM-MN,试求出h与P点横坐标x的函数解析式,并画出该函数的简图,分别写出使PM<MN、PM=MN、PM>MN成立的x的取值范围。
答案

解:(1)∠ABE=∠CBD=30°;
在△ABE中,AB=6,BC=BE=,CD=BC·tan30°=4,
∴OD=OC-CD=2,
∴B(,6) D(0,2),
设BD所在直线的函数解析式是y=kx+b,
,∴
∴ 所以BD所在直线的函数解析式是
(2)∵EF=EA=ABtan30°=,∠FEG=180°-∠FEB-∠AEB=60°,
又∵FG⊥OA,
∴FG=EFsin60°=3,GE=EFcos60°=,OG=OA-AE-GE=
又H为FG中点
∴H(),
∵B(4,6)、D(0,2)、H()在抛物线图象上,
,∴
∴抛物线的解析式是
(3)∵MP=
MN=6-
h=MP-MN=

该函数简图“略”
当0<x<,h<0,即HP>MN ,
当x=时,h=0,即HP=MN,
<x<时,h>0,即HP>MN。

核心考点
试题【如图,平面直角坐标系中有一矩形ABCD(O为原点),点A、C分别在x轴、y轴上,且C点坐标为(0,6);将BCD沿BD折叠(D点在OC边上),使C点落在OA边的】;主要考察你对二次函数的应用等知识点的理解。[详细]
举一反三
如图(1),(2)所示,矩形ABCD的边长AB=6,BC=4,点F在DC上,DF=2,动点M、N分别从点D、B同时出发,沿射线DA、线段BA向点A的方向运动(点M可运动到DA的延长线上),当动点N运动到点A时,M、N两点同时停止运动,连接FM、FN,当F、N、M不在同一直线时,可得△FMN,过△FMN三边的中点作△PWQ,设动点M、N的速度都是1个单位/秒,M、N运动的时间为x秒,试解答下列问题:
(1)说明△FMN∽△QWP;
(2)设0≤x≤4(即M从D到A运动的时间段),试问x为何值时,△PWQ为直角三角形?当x在何范围时,△PQW不为直角三角形?
(3)问当x为何值时,线段MN最短?求此时MN的值。
题型:广东省中考真题难度:| 查看答案
将抛物线y=2x2-12x+16绕它的顶点旋转180°,所得抛物线的解析式是[     ]
A.y=-2x2-12x+16
B.y=-2x2+12-16
C.y=-2x2+12x-19
D.y=-2x2+12x-20
题型:广西自治区中考真题难度:| 查看答案
如图所示,从地面坚直向上抛出一个小球,小球的高度h(单位:m)与小球运动时间t(单位:s)之间的关系式为h=30t-5t2,那么小球从抛出至回落到地面所需要的时间是:
[     ]
A.6s
B.4s
C.3s
D.2s
题型:广西自治区中考真题难度:| 查看答案
如图,过点P(-4,3)作x轴,y轴的垂线,分别交x轴,y轴于A、B两点,交双曲线(k≥2)于E、F两点。
(1)点E的坐标是______,点F的坐标是______;(均用含k的式子表示)
(2)判断EF与AB的位置关系,并证明你的结论;
(3)记S=S△PEF-S△OEF,S是否有最小值?若有,求出其最小值;若没有,请你说明理由。
题型:广西自治区中考真题难度:| 查看答案
如图,把抛物线y=-x2(虚线部分)向右平移1个单位长度,再向上平移1个单位长度,得出抛物线l1,抛物线l2与抛物线l1关于y轴对称,点A,O,B分别是抛物线l1,l2与x轴的交点,D,C分别是抛物线l1,l2的顶点,线段CD交y轴于点E。
(1)分别写出抛物线l1与l2的解析式;
(2)设P使抛物线l1上与D,O两点不重合的任意一点,Q点是P点关于y轴的对称点,试判断以P,Q,C,D为顶点的四边形是什么特殊的四边形?请说明理由;
(3)在抛物线l1上是否存在点M,使得S△ABM=S四边形AOED,如果存在,求出M点的坐标;如果不存在,请说明理由。
题型:广西自治区中考真题难度:| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.