当前位置:初中试题 > 数学试题 > 二次函数的应用 > 已知抛物线y=-x2+bx+c的图象经过点A(m,0)、B(0,n),其中m、n是方程x2-6x+5=0的两个实数根,且m<n。(1)求抛物线的解析式;(2)设...
题目
题型:山东省中考真题难度:来源:
已知抛物线y=-x2+bx+c的图象经过点A(m,0)、B(0,n),其中m、n是方程x2-6x+5=0的两个实数根,且m<n。
(1)求抛物线的解析式;
(2)设(1)中的抛物线与x轴的另一个交点为C,抛物线的顶点为D,求C、D点的坐标和△BCD的面积;
(3)P是线段OC上一点,过点P作PH⊥x轴,交抛物线于点H,若直线BC把△PCH分成面积相等的两部分,求P点的坐标。
答案
解:(1)解方程,得
由m<n,知m=1,n=5
∴A(1,0),B(0,5)

解得
所求抛物线的解析式为
(2)由
故C的坐标为(-5,0)
由顶点坐标公式,得 D(-2,9)
过D作DE⊥x轴于E,易得E(-2,0)

=15
(3)设P(a,0),则H(a,
直线BC把△PCH分成面积相等的两部分,须且只须BC等分线段PH,
亦即PH的中点()在直线BC上
易得直线BC方程为:

解得:(舍去)
故所求P点坐标为(-1,0)。
核心考点
试题【已知抛物线y=-x2+bx+c的图象经过点A(m,0)、B(0,n),其中m、n是方程x2-6x+5=0的两个实数根,且m<n。(1)求抛物线的解析式;(2)设】;主要考察你对二次函数的应用等知识点的理解。[详细]
举一反三
在平面直角坐标系中,将二次函数y=(x-2)2+2的图象向左平移2个单位,所得图象对应的函数解析式为(    )。
题型:四川省中考真题难度:| 查看答案
已知二次函数y1=x2-2x-3及一次函数y2=x+m。
(1)求该二次函数图象的顶点坐标以及它与x轴的交点坐标;
(2)将该二次函数图象在x轴下方的部分沿x轴翻折到x轴上方,图象的其余部分不变,得到一个新图象,请你在图中画出这个新图象,并求出新图象与直线y2=x+m有三个不同公共点时m的值;
(3)当0≤x≤2时,函数y=y1+y2+(m-2)x+3的图象与x轴有两个不同公共点,求m的取值范围。
题型:四川省中考真题难度:| 查看答案
(1)探究新知:
①如图,已知AD∥BC,AD=BC,点M,N是直线CD上任意两点。
求证:△ABM与△ABN的面积相等;
②如图,已知AD∥BE,AD=BE,AB∥CD∥EF,点M是直线CD上任一点,点G是直线EF上任一点,试判断△ABM与△ABG的面积是否相等,并说明理由。
(2)结论应用:
如图③,抛物线y=ax2+bx+c的顶点为C(1,4),交x轴于点A(3,0),交y轴于点D,试探究在抛物线y=ax2+bx+c上是否存在除点C以外的点E,使得△ADE与△ACD的面积相等? 若存在,请求出此时点E的坐标,若不存在,请说明理由。(友情提示:解答本问题过程中,可以直接使用“探究新知”中的结论。)
题型:山东省中考真题难度:| 查看答案
如图,矩形ABCD的顶点A、B的坐标分别为(-4,0)和(2,0),BC=,设直线AC与直线x=4交于点E。

(1)求以直线x=4为对称轴,且过C与原点O的抛物线的函数关系式,并说明此抛物线一定过点E;
(2)设(1)中的抛物线与x轴的另一个交点为N,M是该抛物线上位于C、N之间的一动点,求△CMN面积的最大值。
题型:江苏省中考真题难度:| 查看答案
如图,在直角坐标平面内,O为坐标原点,A点的坐标为(1,0),B点在x轴上且在点A的右侧,AB=OA,过点A和B作x轴的垂线分别交二次函数y=x2的图象于点C和D,直线OC交BD于M,直线CD交y轴于点H。记C、D的横坐标分别为xC,xD,点H的纵坐标yH

(1)证明:①S△CMD∶S梯形ABMC=2∶3;
②xC·xD=-yH
(2)若将上述A点坐标(1,0)改为A点坐标(t,0),t>0,其他条件不变,结论S△CMD∶S梯形ABMC=2∶3是否仍成立?请说明理由。
(3)若A的坐标(t,0)(t>0),又将条件y=x2改为y=ax2(a>0),其他条件不变,那么xC、xD和yH又有怎样的数量关系?写出关系式,并证明。
题型:四川省中考真题难度:| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.