当前位置:初中试题 > 数学试题 > 二次函数的应用 > 已知二次函数y1=x2-2x-3及一次函数y2=x+m。(1)求该二次函数图象的顶点坐标以及它与x轴的交点坐标;(2)将该二次函数图象在x轴下方的部分沿x轴翻折...
题目
题型:四川省中考真题难度:来源:
已知二次函数y1=x2-2x-3及一次函数y2=x+m。
(1)求该二次函数图象的顶点坐标以及它与x轴的交点坐标;
(2)将该二次函数图象在x轴下方的部分沿x轴翻折到x轴上方,图象的其余部分不变,得到一个新图象,请你在图中画出这个新图象,并求出新图象与直线y2=x+m有三个不同公共点时m的值;
(3)当0≤x≤2时,函数y=y1+y2+(m-2)x+3的图象与x轴有两个不同公共点,求m的取值范围。
答案
解:(1)二次函数图象的顶点坐标为
与x轴的交点坐标为
(2)①当直线位于时,此时过点
,即
②当直线位于时,此时与函数的图象有一个公共点
∴方程有一根
,即
时,满足
由①②知,
图像“略”。
(3)∵
∵当时,函数的图象与x轴有两个不同交点,
∴应同时满足下列三方面的条件:
①方程的判别式△=
②抛物线的对称轴满足
③当时,函数值
时,函数值

解得
∴当时,函数图像)的图象与轴有两个不同公共点。
核心考点
试题【已知二次函数y1=x2-2x-3及一次函数y2=x+m。(1)求该二次函数图象的顶点坐标以及它与x轴的交点坐标;(2)将该二次函数图象在x轴下方的部分沿x轴翻折】;主要考察你对二次函数的应用等知识点的理解。[详细]
举一反三
(1)探究新知:
①如图,已知AD∥BC,AD=BC,点M,N是直线CD上任意两点。
求证:△ABM与△ABN的面积相等;
②如图,已知AD∥BE,AD=BE,AB∥CD∥EF,点M是直线CD上任一点,点G是直线EF上任一点,试判断△ABM与△ABG的面积是否相等,并说明理由。
(2)结论应用:
如图③,抛物线y=ax2+bx+c的顶点为C(1,4),交x轴于点A(3,0),交y轴于点D,试探究在抛物线y=ax2+bx+c上是否存在除点C以外的点E,使得△ADE与△ACD的面积相等? 若存在,请求出此时点E的坐标,若不存在,请说明理由。(友情提示:解答本问题过程中,可以直接使用“探究新知”中的结论。)
题型:山东省中考真题难度:| 查看答案
如图,矩形ABCD的顶点A、B的坐标分别为(-4,0)和(2,0),BC=,设直线AC与直线x=4交于点E。

(1)求以直线x=4为对称轴,且过C与原点O的抛物线的函数关系式,并说明此抛物线一定过点E;
(2)设(1)中的抛物线与x轴的另一个交点为N,M是该抛物线上位于C、N之间的一动点,求△CMN面积的最大值。
题型:江苏省中考真题难度:| 查看答案
如图,在直角坐标平面内,O为坐标原点,A点的坐标为(1,0),B点在x轴上且在点A的右侧,AB=OA,过点A和B作x轴的垂线分别交二次函数y=x2的图象于点C和D,直线OC交BD于M,直线CD交y轴于点H。记C、D的横坐标分别为xC,xD,点H的纵坐标yH

(1)证明:①S△CMD∶S梯形ABMC=2∶3;
②xC·xD=-yH
(2)若将上述A点坐标(1,0)改为A点坐标(t,0),t>0,其他条件不变,结论S△CMD∶S梯形ABMC=2∶3是否仍成立?请说明理由。
(3)若A的坐标(t,0)(t>0),又将条件y=x2改为y=ax2(a>0),其他条件不变,那么xC、xD和yH又有怎样的数量关系?写出关系式,并证明。
题型:四川省中考真题难度:| 查看答案
将直角边长为6的等腰Rt△AOC放在如图所示的平面直角坐标系中,点O为坐标原点,点C、A分别在x、y轴的正半轴上,一条抛物线经过点A、C及点B(-3,0)。
(1)求该抛物线的解析式;
(2)若点P是线段BC上一动点,过点P作AB的平行线交AC于点E,连接AP,当△APE的面积最大时,求点P的坐标;
(3)在第一象限内的该抛物线上是否存在点G,使△AGC的面积与(2)中△APE的最大面积相等?若存在,请求出点G的坐标;若不存在,请说明理由。
题型:四川省中考真题难度:| 查看答案
学校计划用地面砖铺设教学楼前矩形广场的地面ABCD,已知矩形广场地面的长为100米,宽为80米,图案设计如图所示:广场的四角为小正方形,阴影部分为四个矩形,四个矩形的宽都为小正方形的边长,阴影部分铺绿色地面砖,其余部分铺白色地面砖。
(1)要使铺白色地面砖的面积为5200平方米,那么矩形广场四角的小正方形的边长为多少米?
(2)如果铺白色地面砖的费用为每平方米30元,铺绿色地面砖的费用为每平方米20元,当广场四角小正方形的边长为多少米时,铺广场地面的总费用最少?最少费用是多少?

题型:山东省中考真题难度:| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.