当前位置:初中试题 > 数学试题 > 二次函数的应用 > 如图,直线y=-x+4与x轴交于点A,与y轴交于点C,已知二次函数的图象经过点A、C和点B(-1,0)。(1)求该二次函数的关系式;(2)设该二次函数的图象的顶...
题目
题型:海南省中考真题难度:来源:
如图,直线y=-x+4与x轴交于点A,与y轴交于点C,已知二次函数的图象经过点A、C和点B(-1,0)。

(1)求该二次函数的关系式;
(2)设该二次函数的图象的顶点为M,求四边形AOCM的面积;
(3)有两动点D、E同时从点O出发,其中点D以每秒个单位长度的速度沿折线OAC按O→A→C的路线运动,点E以每秒4个单位长度的速度沿折线OCA按O→C→A的路线运动,当D、E两点相遇时,它们都停止运动,设D、E同时从点O出发t秒时,△ODE的面积为S。
①请问D、E两点在运动过程中,是否存在DE∥OC,若存在,请求出此时t的值;若不存在,请说明理由;
②请求出S关于t的函数关系式,并写出自变量t的取值范围;
③设S0是②中函数S的最大值,那么S0=(    )。
答案
解:令x=0,则y=4,令y=0,则x=3,
∴A(3,0),C(0,4),
∵二次函数的图象过点C(0,4),
∴可设二次函数的关系式为y=ax2+bx+4,
又∵该函数图象过点A(3,0),B(-1,0),
,解之,得a=-,b=
∴所求二次函数的关系式为
(2)∵=
∴顶点M的坐标为(1,),
过点M作MF⊥x轴于F,
∴S四边形AOCM=S△AFM+S梯形FOCM
=
∴四边形AOCM的面积为10;
(3)①不存在DE∥OC,
∵若DE∥OC,则点D,E应分别在线段OA,CA上,
此时1<t<2,
在Rt△AOC中,AC=5,
设点E的坐标为(x1,y1),


∵DE∥OC,

∴t=
∵t=>2,不满足1<t<2,
∴不存在DE∥OC;
②根据题意得D,E两点相遇的时间为(秒),
现分情况讨论如下:
(ⅰ)当0<t≤1时,
(ⅱ)当1<t≤2时,设点E的坐标为(x2,y2),



(ⅲ)当2<t<时,设点E的坐标为(x3,y3),
类似ⅱ可得,设点D的坐标为(x4,y4),


∴S=S△AOE-S△AOD
==

核心考点
试题【如图,直线y=-x+4与x轴交于点A,与y轴交于点C,已知二次函数的图象经过点A、C和点B(-1,0)。(1)求该二次函数的关系式;(2)设该二次函数的图象的顶】;主要考察你对二次函数的应用等知识点的理解。[详细]
举一反三
如图所示的直角坐标系中,若△ABC是等腰直角三角形,AB=AC=8,D为斜边BC的中点,点P由点A出发沿线段AB作匀速运动,P′是P关于AD的对称点;点Q由点D出发沿射线DC方向作匀速运动,且满足四边形QDPP′是平行四边形,设平行四边形QDPP′的面积为y,DQ=x。
(1)求出y关于x的函数解析式;
(2)求当y取最大值时,过点P,A,P′的二次函数解析式;
(3)能否在(2)中所求的二次函数图象上找一点E使△EPP′的面积为20?若存在,求出E点坐标;若不存在,说明理由。

题型:湖南省中考真题难度:| 查看答案
如图1,矩形ABCD中,AB=3,BC=4,将矩形ABCD沿对角线AC平移,平移后的矩形为EFGH(A、E、C、G始终在同一条直线上),当点E与C重合时停止移动.平移中EF与BC交于点N,GH与BC的延长线交于点M,EH与DC交于点P,FG与DC的延长线交于点Q,设S表示矩形PCMH的面积,S′表示矩形NFQC的面积。

(1)S与S′相等吗?请说明理由;
(2)设AE=x,写出S和x之间的函数关系式,并求出x取何值时S有最大值,最大值是多少?
(3)如图2,连接BE,当AE为何值时,△ABE是等腰三角形。
题型:湖南省中考真题难度:| 查看答案
如图,点P在y轴上,⊙P交x轴于A,B两点,连接AP并延长交⊙P于C点,过点C的直线y=-2x+b交x轴于点D,交y轴于点E,且⊙P的半径为,AB=4。

(1)求点P,点C的坐标;
(2)求证:CD是⊙P的切线;
(3)若二次函数y=-x2+mx+n的图象经过A,C两点,求这个二次函数的解析式,并写出使函数值大于一次函数y=-2x+b值的x的取值范围。
题型:湖南省中考真题难度:| 查看答案
如图,在等腰△ABC中,AB=AC=5cm,BC=6cm,AD⊥BC,垂足为点D。点P,Q分别从B,C两点同时出发,其中点P从点B开始沿BC边向点C运动,速度为1cm/s,点Q从点C开始沿CA边向点A运动,速度为2cm/s,设它们运动的时间为x(s)。
(1)当x为何值时,将△PCQ沿直线PQ翻折180°,使C点落到C′点,得到的四边形CQC′P是菱形;
(2)设△PQD的面积为y(cm2),当0<x<2.5时,求y与x的函数关系式;
(3)当0<x<2.5时,是否存在x,使得△PDM与△MDQ的面积比为5∶3,若存在,求出x的值;若不存在,请说明理由。
题型:湖南省中考真题难度:| 查看答案
两个直角边为6的全等的等腰直角三角形Rt△AOB和Rt△CED按图1所示的位置放置,A与C重合,O与C重合。
(1)求图1中,A,B,D三点的坐标;
(2)Rt△AOB固定不动,Rt△CED沿x轴以每秒2个单位长的速度向右运动,当D点运动到与B点重合时停止,设运动x秒后Rt△CED和Rt△AOB重叠部分面积为y,求y与x之间的函数关系式;
(3)当Rt△CED以(2)中的速度和方向运动,运动时间x=4秒时Rt△CED运动到如图2所示的位置,求经过A,G,C三点的抛物线的解析式;
(4)现有一半径为2,圆心P在(3)中的抛物线上运动的动圆,试问⊙P在运动过程中是否存在⊙P与x轴或y轴相切的情况,若存在,请求出P的坐标,若不存在,请说明理由。

题型:湖南省中考真题难度:| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.