当前位置:初中试题 > 数学试题 > 二次函数的应用 > 已知边长为4的正方形截去一个角后成为五边形ABCDE(如图),其中AF=2,BF=1,试在AB上求一点P,使矩形PNDM有最大面积。...
题目
题型:辽宁省中考真题难度:来源:
已知边长为4的正方形截去一个角后成为五边形ABCDE(如图),其中AF=2,BF=1,试在AB上求一点P,使矩形PNDM有最大面积。

答案
解:设矩形PNDM的边DN=x,NP=y,
则矩形PNDM的面积S=xy(2≤x≤4),
易知CN=4-x,EM=4-y,
且有


S= xy=( 2≤x≤4)
此二次函数的图象开口向下,
对称轴为x=5,
∴当x≤5时,函数值是随x的增大而增大,
对2≤x≤4来说,当x=4时,S有最大值,
S最大=
核心考点
试题【已知边长为4的正方形截去一个角后成为五边形ABCDE(如图),其中AF=2,BF=1,试在AB上求一点P,使矩形PNDM有最大面积。】;主要考察你对二次函数的应用等知识点的理解。[详细]
举一反三
通过实验研究,专家们发现:初中学生听课的注意力指标数是随着老师讲课时间的变化而变化的,讲课开始时,学生的兴趣激增,中间有一段时间的兴趣保持平稳状态,随后开始分散,学生注意力指标数y随时间x(分钟)变化的函数图象如图所示(y越大表示注意力越集中),当0≤x≤10时,图象是抛物线的一部分,当10≤x≤20和20≤x≤40时,图象是线段。
(1)当0≤x≤10时,求注意力指标数y与时间x的函数关系式;
(2)一道数学综合题,需要讲解24分钟,问老师能否经过适当安排,使学生听这道题时,注意力的指标数都不低于36。

题型:辽宁省中考真题难度:| 查看答案
已知抛物线y=x2-4x+1,将此抛物线沿x轴方向向左平移4个单位长度,得到一条新的抛物线。
(1)求平移后的抛物线解析式;
(2)若直线y=m与这两条抛物线有且只有四个交点,求实数m的取值范围;
(3)若将已知的抛物线解析式改为y=ax2+bx+c(a>0,b<0),并将此抛物线沿x轴方向向左平移-个单位长度,试探索问题(2)。
题型:辽宁省中考真题难度:| 查看答案
如图,在平面直角坐标系中,四边形OABC为菱形,点C的坐标为(4,0),∠AOC=60°,垂直于x轴的直线l从y轴出发,沿x轴正方向以每秒1个单位长度的速度运动,设直线l与菱形OABC的两边分别交于点M、N(点M在点N的上方)。

(1)求A、B两点的坐标;
(2)设△OMN的面积为S,直线l运动时间为t秒(0≤t≤6),试求S与t的函数表达式;
(3)在题(2)的条件下,t为何值时,S的面积最大?最大面积是多少?
题型:辽宁省中考真题难度:| 查看答案
如图,已知抛物线与x轴交于A(m,0)、B(n,0)两点,与y轴交于点C(0,3),点P是抛物线的顶点,若m-n=-2,m·n=3。
(1)求抛物线的表达式及P点的坐标;
(2)求△ACP的面积S△ACP
题型:山东省中考真题难度:| 查看答案
在平面直角坐标系中,已知二次函数y=a(x-1)2+k的图象与x轴相交于点A,B,顶点为C,点D在这个二次函数图象的对称轴上,若四边形ACBD是一个边长为2且有一个内角为60°的菱形,求此二次函数的表达式。

题型:江苏中考真题难度:| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.