当前位置:初中试题 > 数学试题 > 二次函数的应用 > 如图,在平面直角坐标系中,四边形OABC为菱形,点C的坐标为(4,0),∠AOC=60°,垂直于x轴的直线l从y轴出发,沿x轴正方向以每秒1个单位长度的速度运动...
题目
题型:辽宁省中考真题难度:来源:
如图,在平面直角坐标系中,四边形OABC为菱形,点C的坐标为(4,0),∠AOC=60°,垂直于x轴的直线l从y轴出发,沿x轴正方向以每秒1个单位长度的速度运动,设直线l与菱形OABC的两边分别交于点M、N(点M在点N的上方)。

(1)求A、B两点的坐标;
(2)设△OMN的面积为S,直线l运动时间为t秒(0≤t≤6),试求S与t的函数表达式;
(3)在题(2)的条件下,t为何值时,S的面积最大?最大面积是多少?
答案
解:(1)∵四边形OABC为菱形,点C的坐标为(4,0),     
∴OA=AB=BC=CO=4
过点A作AD⊥OC于D
∵∠AOC=60°,
∴OD=2,AD=2
∴A(2,2),B(6,2)。(2)直线l从y轴出发,沿x轴正方向运动与菱形OABC的两边相交有三种情况:
①0≤t≤2时,直线l与OA、OC两边相交(如图①)
∵MN⊥OC,
∴ON=t
∴MN=ONtan60°=t
②当2<t≤4时,直线l与AB、OC两边相交(如图②)
S=ON·MN=×t×2=t。③当4<t≤6时,直线l与AB、BC两边相交(如图③)
设直线l与x轴交于点H
∵MN=2-(t-4)=6-t

(3)由(2)知,当0≤t≤2时,
当2<t≤4时,
当4<t≤6时,配方得
∴当t=3时,函数的最大值是
但t=3不在4<t≤6内,
∴在4<t≤6内,函数的最大值不是
而当t>3时,函数随t的增大而减小,     
∴当4<t≤6时,S<4     
综上所述,当t=4秒时,
核心考点
试题【如图,在平面直角坐标系中,四边形OABC为菱形,点C的坐标为(4,0),∠AOC=60°,垂直于x轴的直线l从y轴出发,沿x轴正方向以每秒1个单位长度的速度运动】;主要考察你对二次函数的应用等知识点的理解。[详细]
举一反三
如图,已知抛物线与x轴交于A(m,0)、B(n,0)两点,与y轴交于点C(0,3),点P是抛物线的顶点,若m-n=-2,m·n=3。
(1)求抛物线的表达式及P点的坐标;
(2)求△ACP的面积S△ACP
题型:山东省中考真题难度:| 查看答案
在平面直角坐标系中,已知二次函数y=a(x-1)2+k的图象与x轴相交于点A,B,顶点为C,点D在这个二次函数图象的对称轴上,若四边形ACBD是一个边长为2且有一个内角为60°的菱形,求此二次函数的表达式。

题型:江苏中考真题难度:| 查看答案
如图,二次函数y=ax2的图象与一次函数y=x+b的图象相交于A(-2,2),B两点,从点A和点B分别引平行于y轴的直线与x轴分别交于C,D两点,点P(t,0),Q(4,t+3)分别为线段CD和BD上的动点,过点P且平行于y轴的直线与抛物线和直线分别交于R,S。
(1)求一次函数和二次函数的解析式,并求出点B的坐标;
(2)指出二次函数中,函数y随自变量x增大或减小的情况;
(3)当SR=2RP时,求t的值;
(4)当S△BRQ=15时,求t的值。
题型:山东省中考真题难度:| 查看答案
已知二次函数不经过第一象限,且与x轴相交于不同的两点,请写出一个满足上述条件的二次函数解析式(    )。
题型:山东省中考真题难度:| 查看答案
已知:抛物线M:y=x2+(m-1)x+(m-2)与x轴相交于A(x1,0),B(x2,0)两点,且x1<x2
(1)若x1x2<0,且m为正整数,求抛物线M的解析式;
(2)若x1<1,x2>1,求m的取值范围;
(3)试判断是否存在m,使经过点A和点B的圆与y轴相切于点C(0,2)?若存在,求出M:y=x2+(m-1)x+(m-2)的值;若不存在,试说明理由;
(4)若直线l:y=kx+b过点F(0,7),与(1)中的抛物线M相交于P,Q两点,且使,求直线l的解析式。
题型:山东省中考真题难度:| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.