当前位置:初中试题 > 数学试题 > 二次函数的应用 > 如图,已知抛物线y=﹣x2+bx+c与一直线相交于A(﹣1,0),C(2,3)两点,与y轴交于点N,其顶点为D. (1)抛物线及直线AC的函数关系式; (2)设...
题目
题型:湖北省中考真题难度:来源:
如图,已知抛物线y=﹣x2+bx+c与一直线相交于A(﹣1,0),C(2,3)两点,与y轴交于点N,其顶点为D.
(1)抛物线及直线AC的函数关系式;
(2)设点M(3,m),求使MN+MD的值最小时m的值;
(3)若抛物线的对称轴与直线AC相交于点B,E为直线AC上的任意一点,过点E作EF∥BD交抛物线于点F,以B,D,E,F为顶点的四边形能否为平行四边形?若能,求点E的坐标;若不能,请说明理由;
(4)若P是抛物线上位于直线AC上方的一个动点,求△APC的面积的最大值.
答案

解:(1)由抛物线y=﹣x2+bx+c过点A(﹣1,0)及C(2,3)得,
,解得
故抛物线为y=﹣x2+2x+3
又设直线为y=kx+n过点A(﹣1,0)及C(2,3)得
,解得
故直线AC为y=x+1;
(2)作N点关于直线x=3的对称点N",则N"(6,3),
由(1)得D(1,4),
故直线DN"的函数关系式为y=﹣x+
当M(3,m)在直线DN"上时,
MN+MD的值最小,则m=﹣×=
(3)由(1)、(2)得D(1,4),B(1,2)
∵点E在直线AC上, 设E(x,x+1),
①当点E在线段AC上时,点F在点E上方, 则F(x,x+3),
∵F在抛物线上,
∴x+3=﹣x2+2x+3,
解得,x=0或x=1(舍去)
∴E(0,1);
②当点E在线段AC(或CA)延长线上时,点F在点E下方,
则F(x,x﹣1)
由F在抛物线上∴x﹣1=﹣x2+2x+3
解得x=或x=
∴E()或(
综上,满足条件的点E为E(0,1)、()或();
(4)方法一:过点P作PQ⊥x轴交AC于点Q;
过点C作CG⊥x轴于点G,如图1设Q(x,x+1),
则P(x,-x2+2x+3)
∴PQ=(-x2+2x+3)-(x﹣1)=-x2+x+2
又∵S△APC=S△APQ+S△CPQ=PQ·AG=(-x2+x+2)×3=-(x﹣2+
∴面积的最大值为


核心考点
试题【如图,已知抛物线y=﹣x2+bx+c与一直线相交于A(﹣1,0),C(2,3)两点,与y轴交于点N,其顶点为D. (1)抛物线及直线AC的函数关系式; (2)设】;主要考察你对二次函数的应用等知识点的理解。[详细]
举一反三
已知:y关于x的函数y=(k﹣1)x2﹣2kx+k+2的图象与x轴有交点.
(1)求k的取值范围;
(2)若x1,x2是函数图象与x轴两个交点的横坐标,且满足(k﹣1)x12+2kx2+k+2=4x1x2
①求k的值;
②当k≦x≦k+2时,请结合函数图象确定y的最大值和最大值.
题型:湖北省中考真题难度:| 查看答案
如图甲,四边形OABC的边OA、OC分别在x轴、y轴的正半轴上,顶点在B点的抛物线交x轴于点A、D,交y轴于点E,连接AB、AE、BE.已知tan∠CBE=,A(3,0),D(﹣1,0),E(0,3).
(1)求抛物线的解析式及顶点B的坐标;
(2)求证:CB是△ABE外接圆的切线;
(3)试探究坐标轴上是否存在一点P,使以D、E、P为顶点的三角形与△ABE相似,若存在,直接写出点P的坐标;若不存在,请说明理由;
(4)设△AOE沿x轴正方向平移t个单位长度(0<t≦3)时,△AOE与△ABE重叠部分的面积为s,求s与t之间的函数关系式,并指出t的取值范围.
题型:湖北省中考真题难度:| 查看答案
如图,小河上有一拱桥,拱桥及河道的截面轮廓线由抛物线的一部分ACB和矩形的三边AE,ED,DB组成,已知河底ED是水平的,ED=16米,AE=8米,抛物线的顶点C到ED的距离是11米,以ED所在的直线为x轴,抛物线的对称轴为y轴建立平面直角坐标系.
(1)求抛物线的解析式;
(2)已知从某时刻开始的40小时内,水面与河底ED的距离h(单位:米)随时间t(单位:时)的变化满足函数关系h=﹣(t﹣19)2+8(0≦t≦40),且当水面到顶点C的距离不大于5米时,需禁止船只通行,请通过计算说明:在这一时段内,需多少小时禁止船只通行?
题型:湖北省中考真题难度:| 查看答案
如图1,点A为抛物线C1:y=x2﹣2的顶点,点B的坐标为(1,0)直线AB交抛物线C1于另一点C
(1)求点C的坐标;
(2)如图1,平行于y轴的直线x=3交直线AB于点D,交抛物线C1于点E,平行于y轴的直线x=a交直线AB于F,交抛物线C1于G,若FG:DE=4:3,求a的值;
(3)如图2,将抛物线C1向下平移m(m>0)个单位得到抛物线C2,且抛物线C2的顶点为点P,交x轴于点M,交射线BC于点N.NQ⊥x轴于点Q,当NP平分∠MNQ时,求m的值.
题型:湖北省中考真题难度:| 查看答案
综合与实践:如图,在平面直角坐标系中,抛物线y=﹣x2+2x+3与x轴交于A.B两点,与y轴交于点C,点D是该抛物线的顶点.
(1)求直线AC的解析式及B,D两点的坐标;
(2)点P是x轴上一个动点,过P作直线AC交抛物线于点Q,试探究:随着P点的运动,在抛物线上是否存在点Q,使以点A.P、Q、C为顶点的四边形是平行四边形?若存在,请直接写出符合条件的点Q的坐标;若不存在,请说明理由.
(3)请在直线AC上找一点M,使△BDM的周长最小,求出M点的坐标.
题型:山西省中考真题难度:| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.