当前位置:初中试题 > 数学试题 > 二次函数的应用 > 如图1,点A为抛物线C1:y=x2﹣2的顶点,点B的坐标为(1,0)直线AB交抛物线C1于另一点C(1)求点C的坐标;(2)如图1,平行于y轴的直线x=3交直线...
题目
题型:湖北省中考真题难度:来源:
如图1,点A为抛物线C1:y=x2﹣2的顶点,点B的坐标为(1,0)直线AB交抛物线C1于另一点C
(1)求点C的坐标;
(2)如图1,平行于y轴的直线x=3交直线AB于点D,交抛物线C1于点E,平行于y轴的直线x=a交直线AB于F,交抛物线C1于G,若FG:DE=4:3,求a的值;
(3)如图2,将抛物线C1向下平移m(m>0)个单位得到抛物线C2,且抛物线C2的顶点为点P,交x轴于点M,交射线BC于点N.NQ⊥x轴于点Q,当NP平分∠MNQ时,求m的值.
答案
解:(1)当x=0时,y=﹣2;∵A(0,﹣2).
设直线AB的解析式为y=kx+b,则:,解得
∴直线AB解析式为y=2x﹣2.
∵点C为直线y=2x﹣2与抛物线y=x2﹣2的交点,
则点C的横、纵坐标满足:
解得(舍)∴点C的坐标为(4,6).
(2)直线x=3分别交直线AB和抛物线C1于D.E两点.
∵yD=4,yE=,∴DE=
∴FG=DE=4:3,
∴FG=2.
∴直线x=a分别交直线AB和抛物线C1于F、G两点.
∴yF=2a﹣2,yG=a2﹣2×FG=|2a﹣a2|=2,
解得:a1=2,a2=﹣2+2,a3=2﹣2
(3)设直线MN交y轴于T,过点N做NH⊥y轴于点H;
设点M的坐标为(t,0),
抛物线C2的解析式为y=x2﹣2﹣m;
∴0=﹣t2﹣2﹣m,
∴﹣2﹣m=﹣t2
∴y=x2t2
∴点P坐标为(0,﹣t2).
∵点N是直线AB与抛物线y=x2t2的交点,
则点N的横、纵坐标满足:
解得(舍)
∴N(2﹣t,2﹣2t).NQ=2﹣2t,MQ=2﹣2t,∴MQ=NQ,
∴∠MNQ=45°.
∴△MOT、△NHT均为等腰直角三角形,
∴MO=OT,HT=HN×OT=4,NT=﹣,NH=(2﹣t),PT=﹣t+t2
∵PN平分∠MNQ,∴PT=NT,
∴﹣t+t2=(2﹣t),
∴t1=﹣2,t2=2(舍)
﹣2﹣m=﹣t2=﹣(﹣22
∴m=2.
核心考点
试题【如图1,点A为抛物线C1:y=x2﹣2的顶点,点B的坐标为(1,0)直线AB交抛物线C1于另一点C(1)求点C的坐标;(2)如图1,平行于y轴的直线x=3交直线】;主要考察你对二次函数的应用等知识点的理解。[详细]
举一反三
综合与实践:如图,在平面直角坐标系中,抛物线y=﹣x2+2x+3与x轴交于A.B两点,与y轴交于点C,点D是该抛物线的顶点.
(1)求直线AC的解析式及B,D两点的坐标;
(2)点P是x轴上一个动点,过P作直线AC交抛物线于点Q,试探究:随着P点的运动,在抛物线上是否存在点Q,使以点A.P、Q、C为顶点的四边形是平行四边形?若存在,请直接写出符合条件的点Q的坐标;若不存在,请说明理由.
(3)请在直线AC上找一点M,使△BDM的周长最小,求出M点的坐标.
题型:山西省中考真题难度:| 查看答案
企业的污水处理有两种方式,一种是输送到污水厂进行集中处理,另一种是通过企业的自身设备进行处理.某企业去年每月的污水量均为12000吨,由于污水厂处于调试阶段,污水处理能力有限,该企业投资自建设备处理污水,两种处理方式同时进行.1至6月,该企业向污水厂输送的污水量y1(吨)与月份x(1≤x≤6,且x取整数)之间满足的函数关系如下表:
7至12月,该企业自身处理的污水量y2(吨)与月份x(7≤x≤12,且x取整数)之间满足二次函数关系式为.其图象如图所示.1至6月,污水厂处理每吨污水的费用:(元)与月份x之间满足函数关系式:,该企业自身处理每吨污水的费用:(元)与月份x之间满足函数关系式:;7至12月,污水厂处理每吨污水的费用均为2元,该企业自身处理每吨污水的费用均为1.5元.
(1)请观察题中的表格和图象,用所学过的一次函数、反比例函数或二次函数的有关知识,分别直接写出与x之间的函数关系式;
(2)请你求出该企业去年哪个月用于污水处理的费用W(元)最多,并求出这个最多费用;
(3)今年以来,由于自建污水处理设备的全面运行,该企业决定扩大产能并将所有污水全部自身处理,估计扩大产能后今年每月的污水量都将在去年每月的基础上增加a%,同时每吨污水处理的费用将在去年12月份的基础上增加(a﹣30)%,为鼓励节能降耗,减轻企业负担,财政对企业处理污水的费用进行50%的补助.若该企业每月的污水处理费用为18000元,请计算出a的整数值.
(参考数据:≈15.2,≈20.5,≈28.4)
题型:重庆市中考真题难度:| 查看答案
如图1,已知直线y=kx与抛物线y=交于点A(3,6).
(1)求直线y=kx的解析式和线段OA的长度;
(2)点P为抛物线第一象限内的动点,过点P作直线PM,交x轴于点M(点M、O不重合),交直线OA于点Q,再过点Q作直线PM的垂线,交y轴于点N.试探究:线段QM与线段QN的长度之比是否为定值?如果是,求出这个定值;如果不是,说明理由;
(3)如图2,若点B为抛物线上对称轴右侧的点,点E在线段OA上(与点O、A不重合),点D(m,0)是x轴正半轴上的动点,且满足∠BAE=∠BED=∠AOD.继续探究:m在什么范围时,符合条件的E点的个数分别是1个、2个?
题型:浙江省中考真题难度:| 查看答案
某汽车租赁公司拥有20辆汽车.据统计,当每辆车的日租金为400元时,可全部租出;当每 辆车的日租金每增加50元,未租出的车将增加1辆;公司平均每日的各项支出共4800元.设公司每日租出工辆车时,日收益为y元。(日收益=日租金收入一平均每日各项支出)
(1)公司每日租出x辆车时,每辆车的日租金为                       (用含x的代数式表示);
(2)当每日租出多少辆时,租赁公司日收益最大?最大是多少元?
(3)当每日租出多少辆时,租赁公司的日收益不盈也不亏?
题型:浙江省中考真题难度:| 查看答案
如图,把两个全等的Rt△AOB和Rt△COD分别置于平面直角坐标系中,使直角边OB、OD在x轴上.已知点A(1,2),过A、C两点的直线分别交x轴、y轴于点E、F.抛物线y=ax2+bx+c经过O、A、C三点.
(1)求该抛物线的函数解析式;
(2)点P为线段OC上一个动点,过点P作y轴的平行线交抛物线于点M,交x轴于点N,问是否存在这样的点P,使得四边形ABPM为等腰梯形?若存在,求出此时点P的坐标;若不存在,请说明理由.
(3)若△AOB沿AC方向平移(点A始终在线段AC上,且不与点C重合),△AOB在平移过程中与△COD重叠部分面积记为S.试探究S是否存在最大值?若存在,求出这个最大值;若不存在,请说明理由.
题型:浙江省中考真题难度:| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.