当前位置:高中试题 > 数学试题 > 函数的单调性与导数 > 定义在R上的函数f(x)及其导函数f′(x)的图象都是连续不断的曲线,且对于实数a,b(a<b),有f"(a)>0,f′(b)<0.现给出如下结论:①∃x0∈[...
题目
题型:福建模拟难度:来源:
定义在R上的函数f(x)及其导函数f′(x)的图象都是连续不断的曲线,且对于实数a,b(a<b),有f"(a)>0,f′(b)<0.现给出如下结论:
①∃x0∈[a,b],f(x0)=0;            ②∃x0∈[a,b],f(x0)>f(b);
③∀x0∈[a,b],f(x0)≥f(a);      ④∃x0∈[a,b],f(a)-f(b)>f"(x0)(a-b).
其中结论正确的个数是(  )
A.1B.2C.3D.4
答案
定义在R上的函数f(x)及其导函数f′(x)的图象都是连续不断的曲线,且对于实数a,b(a<b),有f"(a)>0,f′(b)<0,说明在区间(a,b)内存在x0,使f(x0)=0,
所以函数f(x)在区间(a,b)内有极大值点,同时说明函数在区间[a,b]内至少有一个增区间和一个减区间.
由上面的分析可知,函数f(x)在区间[a,b]上不一定有零点,故①不正确;
因为函数在区间(a,b)内有极大值点,与实数b在同一个减区间内的极大值点的横坐标就是存在的一个x0,所以②正确;
函数f(x)在区间[a,b]的两个端点处的函数值无法判断大小,若f(b)>f(a),取x0=a,则③不正确;
当f(a)>f(b),且x0是极大值点的横坐标时结论④正确.
故选B.
核心考点
试题【定义在R上的函数f(x)及其导函数f′(x)的图象都是连续不断的曲线,且对于实数a,b(a<b),有f"(a)>0,f′(b)<0.现给出如下结论:①∃x0∈[】;主要考察你对函数的单调性与导数等知识点的理解。[详细]
举一反三
已知f(x)=x3+mx2-x+2(m∈R).
(1)如果函数f(x)的单调递减区间为(-
1
3
,1),求函数f(x)的解析式;
(2)(理)若f(x)的导函数为f′(x),对任意的x∈(0,+∞),不等式f′(x)≥2xlnx-1恒成立,求实数m的取值范围.
(文)若f(x)的导函数为f′(x),对任意的x∈(0,+∞),不等式f′(x)≥2(1-m)恒成立,求实数m的取值范围.
题型:绵阳二诊难度:| 查看答案
已知函数f(x)=-
1
2
x2+3x+(
9
2
sinθ)lnx
(1)当sinθ=-
4
9
时,求f(x)的单调区间;
(2)若函数f(x)在其定义域内不是单调函数,求θ的取值范围.
题型:安徽模拟难度:| 查看答案
已知定义在同一个区间(


3
3


6
2
)上的两个函数f(x)=x2-2alnx,g(x)=x3-bx2+x在x=x0处的切线平行于x轴.
(1)求实数a和b的取值范围;
(2)试问:是否存在实数x1,x2,当x1,x0,x2成等比数列时,等式f(x1)+f(x2)=2g(x0)成立?若成立,求出实数a的取值范围;若不存在,请说明理由.
题型:温州二模难度:| 查看答案
已知函数f(x)=
8
3
x3-2x2+bx+a,g(x)=ln(1+2x)+x.
(1)求f(x)的单调区间.
(2)若f(x)与g(x)有交点,且在交点处的切线均为直线y=3x,求a,b的值并证明:在公共定义域内恒有f(x)≥g(x).
(3)设A(x1,g(x1)),B(x2,g(x2)),C(t,g(t))是y=g(x)图象上任意三点,且-
1
2
<x1<t<x2,求证:割线AC的斜率大于割线BC的斜率.
题型:葫芦岛模拟难度:| 查看答案
函数y=x+xln x的单调递减区间是(  )
A.(-∞,e-2B.(0,e-2C.(e-2,+∞)D.(e2,+∞)
题型:不详难度:| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.