当前位置:初中试题 > 数学试题 > 二次函数的应用 > 如图所示,在直角坐标系中,矩形ABCD的边AD在x轴上,点A在原点,AB=3,AD=5.若矩形以每秒2个单位长度沿x轴正方向作匀速运动.同时点P从A点出发以每秒...
题目
题型:河北省期末题难度:来源:
如图所示,在直角坐标系中,矩形ABCD的边AD在x轴上,点A在原点,AB=3,AD=5.若矩形以每秒2个单位长度沿x轴正方向作匀速运动.同时点P从A点出发以每秒1个单位长度沿A﹣B﹣C﹣D的路线作匀速运动.当P点运动到D点时停止运动,矩形ABCD也随之停止运动.
(1)求P点从A点运动到D点所需的时间;
(2)设P点运动时间为t(秒)
①当t=5时,求出点P的坐标;
②若△OAP的面积为s,试求出s与t之间的函数关系式(并写出相应的自变量t的取值范围).
答案
解:(1)P点从A点运动到D点所需的时间=(3+5+3)×1=11(秒)
(2)①当t=5时,P点从A点运动到BC上,
此时A点到E点的时间=10秒,AB+BP=5,
∴BP=2过点P作PE⊥AD于点E,则PE=AB=3,AE=BP=2
∴OD=OA+AE=10+2=12
∴点P的坐标为(12,3)
②分三种情况:i.0<t≤3时,点P在AB上运动,此时OA=2t,
AP=t×s=×2t×t=t2
ii.3<t≤8时,点P在AB上运动,
此时OA=2t×s=×2t×3=3t
iii.8<t<11时,
点P在CD上运动,此时OA=2t,AB+BC+CP=t
DP=(AB+BC+CD)﹣(AB+BC+CP)=11﹣t×s=×2t(11﹣t)=﹣t2+11t
综上所述,s与t之间的函数关系式是:
当0<t≤3时,s=t2
当3<t≤8时,s=3t;
当8<t<11时,s=﹣t2+11t.
核心考点
试题【如图所示,在直角坐标系中,矩形ABCD的边AD在x轴上,点A在原点,AB=3,AD=5.若矩形以每秒2个单位长度沿x轴正方向作匀速运动.同时点P从A点出发以每秒】;主要考察你对二次函数的应用等知识点的理解。[详细]
举一反三
如图,在平面直角坐标系中,直线y=x+4与x轴、y轴分别交于A、B两点,抛物线y=﹣x2+bx+c经过A、B两点,并与x轴交于另一点C(点C点A的右侧),点P是抛物线上一动点.
(1)求抛物线的解析式及点C的坐标;
(2)若点P在第二象限内,过点P作PD⊥轴于D,交AB于点E.当点P运动到什么位置时,线段PE最长?此时PE等于多少?
(3)如果平行于x轴的动直线l与抛物线交于点Q,与直线AB交于点N,点M为OA的中点,那么是否存在这样的直线l,使得△MON是等腰三角形?若存在,请求出点Q的坐标;若不存在,请说明理由.
题型:四川省中考真题难度:| 查看答案
如图所示,在直角坐标系中,矩形ABCD的边AD在x轴上,点A在原点,AB=3,AD=5.若矩形以每秒2个单位长度沿x轴正方向作匀速运动.同时点P从A点出发以每秒1个单位长度沿A﹣B﹣C﹣D的路线作匀速运动.当P点运动到D点时停止运动,矩形ABCD也随之停止运动.
(1)求P点从A点运动到D点所需的时间;
(2)设P点运动时间为t(秒).
①当t=5时,求出点P的坐标;
②若△OAP的面积为s,试求出s与t之间的函数关系式(并写出相应的自变量t的取值范围).
题型:期末题难度:| 查看答案
如图,已知直线l1:y=x+与直线l2:y=﹣2x+16相交于点C,l1、l2分别交x轴于A、B两点.矩形DEFG的顶点D、E分别在直线l1、l2上,顶点F、G都在x轴上,且点G与点B重合.
(1)求△ABC的面积;
(2)求矩形DEFG的边DE与EF的长;
(3)若矩形DEFG沿x轴的反方向以每秒1个单位长度的速度平移,设移动时间为t(0≤t≤12)秒,矩形DEFG与△ABC重叠部分的面积为S,求S关于t的函数关系式,并写出相应的t的取值范围.
题型:四川省期末题难度:| 查看答案
如图,P是边长为1的正方形ABCD对角线AC上一动点(P与A、C不重合),点E在射线BC上,PE=PB.
(1)求证:①PE=PD; ②PE⊥PD;
(2)设AP=x,△PBE的面积为y.求出y关于x的函数关系式.
题型:山东省期末题难度:| 查看答案
已知:抛物线y=ax2+4ax+t与x轴的一个交点为A(﹣1,0)。
(1)求抛物线与x轴的另一个交点B的坐标;
(2)D是抛物线与y轴的交点,C是抛物线上的一点,且以AB为一底的梯形ABCD的面积为9,求此抛物线的解析式;(3)E是第二象限内到x轴、y轴的距离的比为5:2的点,如果点E在(2)中的抛物线上,且它与点A在此抛物线对称轴的同侧,问:在抛物线的对称轴上是否存在点P,使△APE的周长最小?若存在,求出点P的坐标;若不存在,请说明理由。
题型:湖北省期中题难度:| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.