当前位置:初中试题 > 数学试题 > 二次函数的应用 > 已知△ABC中,边BC的长与BC边上的高的和为20.(1)写出△ABC的面积y与BC的长x之间的函数关系式,并求出面积为48时BC的长;(2)当BC多长时,△A...
题目
题型:山东省中考真题难度:来源:
已知△ABC中,边BC的长与BC边上的高的和为20.
(1)写出△ABC的面积y与BC的长x之间的函数关系式,并求出面积为48时BC的长;
(2)当BC多长时,△ABC的面积最大?最大面积是多少?
(3)当△ABC面积最大时,是否存在其周长最小的情形?如果存在,请说出理由,并求出其最小周长;如果不存在,请给予说明.
答案
解:(1)由题意,得 y= =﹣x2+10x,当y=48时,﹣x2+10x=48,解得:x1=12,x2=8, ∴面积为48时BC的长为12或8;
(2)∵, ∴y=﹣ (x﹣10)2+50,
∴当x=10时,y最大=50;
(3)△ABC面积最大时,△ABC的周长存在最小的情形.理由如下:
由(2)可知△ABC的面积最大时,BC=10,BC边上的高也为10 过点A作直线L平行于BC,作点B关于直线L的对称点B′,
连接B′C 交直线L于点A′,再连接A′B,AB′
则由对称性得:A′B′=A′B,AB′=AB,
∴A′B+A′C=A′B′+A′C=B′C,
当点A不在线段B′C上时,则由三角形三边关系可得:
△ABC的周长=AB+AC+BC=AB′+AC+BC>B′C+BC,
当点A在线段B′C上时,即点A与A′重合,
这时△ABC的周长=AB+AC+BC=A′B′+A′C+BC=B′C+BC,
因此当点A与A′重合时,△ABC的周长最小;
这时由作法可知:BB′=20,
∴B′C= ,
∴△ABC的周长=
因此当△ABC面积最大时,存在其周长最小的情形,最小周长为
核心考点
试题【已知△ABC中,边BC的长与BC边上的高的和为20.(1)写出△ABC的面积y与BC的长x之间的函数关系式,并求出面积为48时BC的长;(2)当BC多长时,△A】;主要考察你对二次函数的应用等知识点的理解。[详细]
举一反三
如图,抛物线y= x2+bx+c与y轴交于点C(0,﹣4),与x轴交于点A,B,且B点的坐标为(2,0)
(1)求该抛物线的解析式.
(2)若点P是AB上的一动点,过点P作PE∥AC,交BC于E,连接CP,求△PCE面积的最大值.
(3)若点D为OA的中点,点M是线段AC上一点,且△OMD为等腰三角形,求M点的坐标.
题型:山东省中考真题难度:| 查看答案
某高中学校为高一新生设计的学生单人桌的抽屉部分是长方体形,抽屉底面周长为180cm,高为20cm.请通过计算说明,当底面的宽x为何值时,抽屉的体积y最大?最大为多少?(材质及其厚度等暂忽略不计)
题型:山东省中考真题难度:| 查看答案
已知二次函数y=x2+mx+n的图像经过点(2,-1)和(1,0),求这个二次函数的解析式,并求出它的图像的顶点坐标和对称轴.
题型:上海市期末题难度:| 查看答案
如图,一次函数 的图像与x轴、y轴分别相交于点A和点B,二次函数的图像经过A、B两点.
(1)求这个一次函数的解析式;
(2)求二次函数的解析式;
(3)如果点C在这个二次函数的图像上,且点C的横坐标为5,求tan∠CAB的值.
题型:上海市期末题难度:| 查看答案
图1是棱长为a的小正方体,图2,图3由这样的小正方体摆放而成,按照这样的方法继续摆放,自上而下分别叫第一层,第二层,…第n层,第n层的小正方体的个数记为s,解答下列问题:

魔方格

(1)按照要求填表:
题型:常州难度:| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.
n1234
s136