当前位置:初中试题 > 数学试题 > 二次函数的应用 > 已知某二次函数的最大值为2,图象的顶点在直线y=x+1上,并且图象经过点(2,1),求二次函数的解析式....
题目
题型:不详难度:来源:
已知某二次函数的最大值为2,图象的顶点在直线y=x+1上,并且图象经过点(2,1),求二次函数的解析式.
答案
∵函数的最大值是2,则此函数顶点的纵坐标是2,
又顶点在y=x+1上,那么顶点的横坐标是1,
设此函数的解析式是y=a(x-1)2+2,
再把(2,1)代入函数中可得
a(2-1)2+2=1,
解得a=-1,
故函数解析式是y=-x2+2x+1.
核心考点
试题【已知某二次函数的最大值为2,图象的顶点在直线y=x+1上,并且图象经过点(2,1),求二次函数的解析式.】;主要考察你对二次函数的应用等知识点的理解。[详细]
举一反三
已知二次函数的顶点是(1,-2)且经过点(5,6)
(1)求该二次函数的解析式;
(2)若该二次函数与x轴的两个交点分别是点A和点B,并且点A在点B的左侧,与y轴交于点C,求出△ABC的面积.
题型:不详难度:| 查看答案
某商场将进价40元一个的某种商品按50元一个售出时,每月能卖出500个.商场想了两个方案来增加利润:
方案一:提高价格,但这种商品每个售价涨价1元,销售量就减少10个;
方案二:售价不变,但发资料做广告.已知这种商品每月的广告费用m(千元)与销售量倍数p关系为
p=-0.4m2+2m;试通过计算,请你判断商场为赚得更大的利润应选择哪种方案?请说明你判断的理由!
题型:不详难度:| 查看答案
已知抛物线y=-x2+bx+c,它与x轴的两个交点分别为(-1,0),(3,0),求此抛物线的解析式.
题型:不详难度:| 查看答案
已知抛物线y=x2+(2m+1)x+m+1,根据下列条件分别求m的值.
(1)若抛物线过原点;
(2)若抛物线的顶点在x轴上;
(3)若抛物线的对称轴为x=1.
题型:不详难度:| 查看答案
某商场将进货价为每个30元的台灯以每个40元出售,平均每月能售出600个.经过调查表明:如果每个台灯的售价每上涨1元,那么其销售数量就将减少10个.为了实现平均每月10000元的销售利润,问每个台灯的售价应定为多少元?
题型:不详难度:| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.