当前位置:初中试题 > 数学试题 > 二次函数的应用 > 已知抛物线y=x2+(2m+1)x+m+1,根据下列条件分别求m的值.(1)若抛物线过原点;(2)若抛物线的顶点在x轴上;(3)若抛物线的对称轴为x=1....
题目
题型:不详难度:来源:
已知抛物线y=x2+(2m+1)x+m+1,根据下列条件分别求m的值.
(1)若抛物线过原点;
(2)若抛物线的顶点在x轴上;
(3)若抛物线的对称轴为x=1.
答案
(1)∵抛物线y=x2+(2m+1)x+m+1过原点,
∴点O(0,0)满足该抛物线方程,
∴0=m+1,
解得m=-1;

(2)∵抛物线的顶点在x轴上,
∴△=(2m+1)2-4(m+1)=0,即4m2-3=0,
解得,m=±


3
2


(3)∵抛物线的对称轴为x=1,
∴2m+1=-2,解得m=-
3
2
核心考点
试题【已知抛物线y=x2+(2m+1)x+m+1,根据下列条件分别求m的值.(1)若抛物线过原点;(2)若抛物线的顶点在x轴上;(3)若抛物线的对称轴为x=1.】;主要考察你对二次函数的应用等知识点的理解。[详细]
举一反三
某商场将进货价为每个30元的台灯以每个40元出售,平均每月能售出600个.经过调查表明:如果每个台灯的售价每上涨1元,那么其销售数量就将减少10个.为了实现平均每月10000元的销售利润,问每个台灯的售价应定为多少元?
题型:不详难度:| 查看答案
已知抛物线y=kx2-2kx+9-k(k为常数,k≠0),且当x>0时,y>1.
(1)求抛物线的顶点坐标;
(2)求k的取值范围;
(3)过动点P(0,n)作直线l⊥y轴,点O为坐标原点.
①当直线l与抛物线只有一个公共点时,求n关于k的函数关系式;
②当直线l与抛物线相交于A、B两点时,是否存在实数n,使得不论k在其取值范围内取任意值时,△AOB的面积为定值?如果存在,求出n的值;如果不存在,说明理由.
题型:不详难度:| 查看答案
已知抛物线的函数关系式:y=x2+2(a-1)x+a2-2a(其中x是自变量),
(1)若点P(2,3)在此抛物线上,
①求a的值;
②若a>0,且一次函数y=kx+b的图象与此抛物线没有交点,请你写出一个符合条件的一次函数关系式(只需写一个,不要写过程);
(2)设此抛物线与轴交于点A(x1,0)、B(x2,0).若x1


3
<x2,且抛物线的顶点在直线x=
3
4
的右侧,求a的取值范围.
题型:不详难度:| 查看答案
某商店购进一批单价为20元的日用商品,如果以单价30元销售,那么月内可售出400件,根据销售经验,提高销售单价会导致销量的减少,即销售单价每提高1元,每月销售量相应减少20件,请写出利润y与单价x之间的函数关系式______.
题型:不详难度:| 查看答案
某化工厂材料经销公司购进了一种化工原料共7000千克,购进价格为每千克30元,物价部门规定其销售单价不得高于每千克70元,也不得低于每千克30元.市场调查发现;单价定为70元时,每日平均销售60千克;单价每降低1元,每日平均多售出2千克.在销售过程中,每天还要支出其它费用500元(天数不足1天时按整天计算).
(1)每日平均销售可以表示为______;
(2)每日平均销售额可以表示为______;
(3)每日平均获利可以表示为y=______;
(4)当销售单价是______元时,每日平均获利最多,是______元;
(5)若将这种化工原料全部售出,比较每日平均获利最多和销售单价最高这两种销售方式.哪一种获总利润最多?
题型:不详难度:| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.