当前位置:初中试题 > 数学试题 > 二次函数的应用 > 一家用电器开发公司研制出一种新型电子产品,每件的生产成本为18元,按定价40元出售,每月可销售20万件,为了增加销量,公司决定采取降价的办法,经市场调研,每降价...
题目
题型:不详难度:来源:
一家用电器开发公司研制出一种新型电子产品,每件的生产成本为18元,按定价40元出售,每月可销售20万件,为了增加销量,公司决定采取降价的办法,经市场调研,每降价1元,月销售量可增加2万件,设每件产品售价为x元.
(1)设月销售利润W(万元),请用含有销售单价x(元)的代数式表示w;
(2)为获得最大销售利润,每件产品的售价应为多少元?此时,最大月销售利润是多少?
(3)为使月销售利润达到480万元,且按物价部门规定此类商品每件的利润率不得高于80%,每件产品的售价为多少?
答案
(1)根据题目可得函数式:
W=(x-18)[20+2(40-x)]
=-2x2+136x-1800,
即月销售利润W=-2x2+136x-1800;
(2)根据二次函数求最值的方法,
由W=-2x2+136x-1800得:
W=-2(x-34)2+512
当x=34时,W有最大值512.
即当售价为34元/件时最大利润为512万元.
(3)当W=480时
-2x2+136x-1800=480
解得x1=30,x2=38,
又∵38>18×(1+80%)
∴x=30.
答:每件产品的售价为30元时,月销售利润达到480万元且每件的利润率不得高于80%.
故答案为(1)月销售利润W=-2x2+136x-1800;
(2)当售价为34元/件时最大利润为512万元;
(3)每件产品的售价为30元时,月销售利润达到480万元且每件的利润率不得高于80%.
核心考点
试题【一家用电器开发公司研制出一种新型电子产品,每件的生产成本为18元,按定价40元出售,每月可销售20万件,为了增加销量,公司决定采取降价的办法,经市场调研,每降价】;主要考察你对二次函数的应用等知识点的理解。[详细]
举一反三
已知抛物线y=ax2+bx+c经过(0,-6),(8,-6)两点,其顶点的纵坐标是2,求这个抛物线的解析式.
题型:不详难度:| 查看答案
扬州市政府大力扶持大学生创业.李明在政府的扶持下投资销售一种进价为每件20元的小商品.销售过程中发现,月销售量y(件)与销售单价x(元)之间的关系可近似的看作一次函数:y=-10x+n.物价部门规定销售单价不得超过36元,且当销售单价x(元)定为25元时,李明每月销售量为250件.
(1)求n的值;
(2)当销售单价定为多少元时,每月可获得最大利润?并求最大利润为多少元.
(3)如果李明想要每月获得2000元的利润,那么销售单价应定为多少元?
题型:不详难度:| 查看答案
顶点为(-1,2)且过点(2,3)的抛物线的表达式为______.
题型:不详难度:| 查看答案
某批发市场批发甲种水果,根据以往经验和市场行情,预计夏季某一段时间内,甲种水果的销售利润y(万元)与进货量x(吨)近似满足函数关系y=ax2+bx(其中a≠0,a,b为常数,x≥0),且进货量x为1吨时,销售利润y为1.4万元;进货量x为2吨时,销售利润y为2.6万元.求y(万元)与x(吨)之间的函数关系式.
题型:不详难度:| 查看答案
已知抛物线y=
3
5
x2+bx+c与y轴交于点A(0,3),与x轴交于点B(1,0),则此抛物线的解析式为(  )
A.y=
3
5
x2+
18
5
x+3
B.y=
3
5
x2-
5
18
x+3
C.y=
3
5
x2-
18
5
x-3
D.y=
3
5
x2-
18
5
x+3
题型:不详难度:| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.